Home
Class 12
MATHS
intx2^(ln(x^(2)+1))dx is equal to...

`intx2^(ln(x^(2)+1))dx` is equal to

A

`(2^(ln(x^(2)+1)))/(2(x^(2)+1))+C`

B

`(x^(2)+1)2^(ln(x^(2)+1))/(ln2+1)`

C

`((x^(2)+1)^(ln2+1))/(2(ln2+1))+C`

D

`((x^(2)+1)^(ln2))/(2(ln2+1))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x \cdot 2^{\ln(x^2 + 1)} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start by rewriting \( 2^{\ln(x^2 + 1)} \) using the property of logarithms: \[ 2^{\ln(x^2 + 1)} = (x^2 + 1)^{\ln 2} \] Thus, the integral becomes: \[ I = \int x \cdot (x^2 + 1)^{\ln 2} \, dx \] ### Step 2: Use substitution Let \( t = x^2 + 1 \). Then, we differentiate to find \( dt \): \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] Now, substituting \( x^2 = t - 1 \) gives us \( x = \sqrt{t - 1} \). Therefore, we can rewrite \( dx \) as: \[ dx = \frac{dt}{2\sqrt{t - 1}} \] ### Step 3: Substitute into the integral Substituting \( x \) and \( dx \) into the integral, we have: \[ I = \int \sqrt{t - 1} \cdot t^{\ln 2} \cdot \frac{dt}{2\sqrt{t - 1}} = \frac{1}{2} \int t^{\ln 2} \, dt \] ### Step 4: Integrate Now we can integrate: \[ \frac{1}{2} \int t^{\ln 2} \, dt = \frac{1}{2} \cdot \frac{t^{\ln 2 + 1}}{\ln 2 + 1} + C \] ### Step 5: Substitute back for \( t \) Now, substituting back \( t = x^2 + 1 \): \[ I = \frac{1}{2(\ln 2 + 1)} (x^2 + 1)^{\ln 2 + 1} + C \] ### Final Answer Thus, the final answer is: \[ I = \frac{1}{2(\ln 2 + 1)} (x^2 + 1)^{\ln 2 + 1} + C \] ---

To solve the integral \( I = \int x \cdot 2^{\ln(x^2 + 1)} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start by rewriting \( 2^{\ln(x^2 + 1)} \) using the property of logarithms: \[ 2^{\ln(x^2 + 1)} = (x^2 + 1)^{\ln 2} \] Thus, the integral becomes: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

intx^2 dx is equal to ..

intx^3/(x+1)dx is equal to:

intx^3/(x+1)dx is equal to:

intx^(x)(1+log_(e)x) dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int_(0)^(1//2)(1)/(1-x^(2))ln.(1-x)/(1+x)dx is equal to

If f(x)={{:(x,xlt1),(x-1,xge1):} , then underset(0)overset(2)intx^(2)f(x) dx is equal to :

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

int x ^(x)((ln x )^(2) +lnx+1/x) dx is equal to:

int (x^(2)(1-"ln"x))/(("ln"^(4)x-x^(4))dx is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. Evaluate: int(dx)/(xsqrt(x^(6)-16))=

    Text Solution

    |

  2. int (dx)/(cos (2 x)cos (4x)) is equal to

    Text Solution

    |

  3. intx2^(ln(x^(2)+1))dx is equal to

    Text Solution

    |

  4. If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, ...

    Text Solution

    |

  5. Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

    Text Solution

    |

  6. Evaluate: int((2x+1))/((x^(2)+4x+1)^(3//2))dx

    Text Solution

    |

  7. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  8. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |

  9. Evaluate :int(dx)/(xsqrt(x^(6)+1)) equals

    Text Solution

    |

  10. int(dx)/((1+sqrtx)^(2010))=2[(1)/(alpha(1+sqrtx)^(alpha))-(1)/(beta(1+...

    Text Solution

    |

  11. int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(-1)(f(x))+B, where A, B are co...

    Text Solution

    |

  12. If intsqrt(x+sqrt(x^(2)+2))dx=A{x+sqrt(x^(2)+2)}^(3//2)+(B)/(sqrt(x+sq...

    Text Solution

    |

  13. int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

    Text Solution

    |

  14. int(dx)/(x^(2)sqrt(16-x^(2))) has the value equal to

    Text Solution

    |

  15. Evaluate int(tan(pi/4 -x))/(cos^(2)x sqrt(tan^(3)x+tan^(2) x+ tan x))d...

    Text Solution

    |

  16. int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

    Text Solution

    |

  17. int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3)+2x^(2)+5)dx=

    Text Solution

    |

  18. int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

    Text Solution

    |

  19. If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0), and f...

    Text Solution

    |

  20. If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))), then I equals

    Text Solution

    |