Home
Class 12
MATHS
If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(...

If `int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c,` then

A

`A=(1)/(sqrt2),f(x)=sinx`

B

`A=sqrt2,f(x)=cosx`

C

`A=sqrt2,f(x)=x`

D

`A=(1)/(sqrt2),f(x)=x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin x}{\sin\left(x - \frac{\pi}{4}\right)} \, dx\), we will follow these steps: ### Step 1: Rewrite the numerator We can express \(\sin x\) using the angle addition formula: \[ \sin x = \sin\left(x - \frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right) \cos\left(x - \frac{\pi}{4}\right) \] This allows us to rewrite the integral: \[ I = \int \frac{\sin\left(x - \frac{\pi}{4}\right) + \frac{1}{\sqrt{2}} \cos\left(x - \frac{\pi}{4}\right)}{\sin\left(x - \frac{\pi}{4}\right)} \, dx \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ I = \int 1 \, dx + \frac{1}{\sqrt{2}} \int \cot\left(x - \frac{\pi}{4}\right) \, dx \] ### Step 3: Integrate the first part The first integral is straightforward: \[ \int 1 \, dx = x \] ### Step 4: Integrate the second part For the second integral, we know that: \[ \int \cot u \, du = \log|\sin u| + C \] Thus, \[ \int \cot\left(x - \frac{\pi}{4}\right) \, dx = \log|\sin\left(x - \frac{\pi}{4}\right)| + C \] ### Step 5: Combine the results Combining both parts, we have: \[ I = x + \frac{1}{\sqrt{2}} \log|\sin\left(x - \frac{\pi}{4}\right)| + C \] ### Step 6: Rewrite the logarithm Using the identity \(\sin\left(x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}(\sin x - \cos x)\), we can rewrite the logarithm: \[ I = x + \frac{1}{\sqrt{2}} \log\left|\frac{1}{\sqrt{2}}(\sin x - \cos x)\right| + C \] This simplifies to: \[ I = x + \frac{1}{\sqrt{2}} \log|\sin x - \cos x| - \frac{1}{\sqrt{2}} \log\left(\sqrt{2}\right) + C \] ### Step 7: Final expression Thus, we can express the integral as: \[ I = x + \frac{1}{\sqrt{2}} \log|\sin x - \cos x| + C' \] where \(C' = C - \frac{1}{\sqrt{2}} \log\left(\sqrt{2}\right)\). ### Conclusion From the given expression, we can identify: \[ A = \frac{1}{\sqrt{2}}, \quad f(x) = x \]

To solve the integral \(\int \frac{\sin x}{\sin\left(x - \frac{\pi}{4}\right)} \, dx\), we will follow these steps: ### Step 1: Rewrite the numerator We can express \(\sin x\) using the angle addition formula: \[ \sin x = \sin\left(x - \frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right) \cos\left(x - \frac{\pi}{4}\right) \] This allows us to rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(sin2x)/((sinx+cosx)^2)dx

The value of sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx , is

int((sinx+cosx)/(sqrt(sin2x))dx

int(sinx+cosx)/(sqrt(1+sin2x))dx

If int(sinx+3cosx)/(sinx+cosx)dx=(kx)/(2)+ln(sinx+cosx) , then k is_________.

Evaluate : int(sinx+cosx)/(sin(x-a))dx

int (sinx+cosx)/sqrt(1+sin2x)dx .

Evaluate: int(1+sinx)/(sqrt(x-cosx))dx

Evaluate: int(1+sinx)/(sqrt(x-cosx))dx

If int(cosx-sinx)/(sqrt(8-sin2x))dx=sin^(-1)((sinx+cosx)/(a))+C then a =

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. int (dx)/(cos (2 x)cos (4x)) is equal to

    Text Solution

    |

  2. intx2^(ln(x^(2)+1))dx is equal to

    Text Solution

    |

  3. If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, ...

    Text Solution

    |

  4. Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

    Text Solution

    |

  5. Evaluate: int((2x+1))/((x^(2)+4x+1)^(3//2))dx

    Text Solution

    |

  6. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  7. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |

  8. Evaluate :int(dx)/(xsqrt(x^(6)+1)) equals

    Text Solution

    |

  9. int(dx)/((1+sqrtx)^(2010))=2[(1)/(alpha(1+sqrtx)^(alpha))-(1)/(beta(1+...

    Text Solution

    |

  10. int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(-1)(f(x))+B, where A, B are co...

    Text Solution

    |

  11. If intsqrt(x+sqrt(x^(2)+2))dx=A{x+sqrt(x^(2)+2)}^(3//2)+(B)/(sqrt(x+sq...

    Text Solution

    |

  12. int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

    Text Solution

    |

  13. int(dx)/(x^(2)sqrt(16-x^(2))) has the value equal to

    Text Solution

    |

  14. Evaluate int(tan(pi/4 -x))/(cos^(2)x sqrt(tan^(3)x+tan^(2) x+ tan x))d...

    Text Solution

    |

  15. int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

    Text Solution

    |

  16. int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3)+2x^(2)+5)dx=

    Text Solution

    |

  17. int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

    Text Solution

    |

  18. If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0), and f...

    Text Solution

    |

  19. If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))), then I equals

    Text Solution

    |

  20. If I=intx^(27)(6x^(2)+5x+4)(x^(2)+x+1)^(6)dx=f(x)+C, then f(x) is eq...

    Text Solution

    |