Home
Class 12
MATHS
If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-...

If `int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x))` where f(x) is of the form of `ax^(2)+bx+c`, then the value of f(1) is

A

4

B

5

C

6

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral and find the function \( f(x) \) in the form \( ax^2 + bx + c \) such that \( f(1) \) can be computed. ### Step-by-Step Solution: 1. **Set Up the Integral**: We start with the integral: \[ I = \int \frac{2x + 3}{x(x + 1)(x + 2)(x + 3) + 1} \, dx \] We know that this integral is equal to: \[ C - \frac{1}{f(x)} \] where \( f(x) \) is of the form \( ax^2 + bx + c \). 2. **Substitution**: Let’s define \( t = x^2 + 3x \). Then, the derivative \( dt \) is: \[ dt = (2x + 3) \, dx \] This allows us to rewrite the integral in terms of \( t \): \[ I = \int \frac{dt}{t(t + 2) + 1} \] 3. **Simplifying the Denominator**: We simplify the denominator: \[ t(t + 2) + 1 = t^2 + 2t + 1 = (t + 1)^2 \] Thus, the integral becomes: \[ I = \int \frac{dt}{(t + 1)^2} \] 4. **Integrating**: The integral of \( \frac{1}{(t + 1)^2} \) is: \[ -\frac{1}{t + 1} + C \] 5. **Substituting Back**: Now we substitute back \( t = x^2 + 3x \): \[ I = -\frac{1}{x^2 + 3x + 1} + C \] 6. **Comparing with Given Expression**: We know from the problem statement that: \[ I = C - \frac{1}{f(x)} \] Therefore, we can compare: \[ -\frac{1}{x^2 + 3x + 1} + C = C - \frac{1}{f(x)} \] This implies: \[ f(x) = x^2 + 3x + 1 \] 7. **Finding \( f(1) \)**: Now we need to find \( f(1) \): \[ f(1) = 1^2 + 3 \cdot 1 + 1 = 1 + 3 + 1 = 5 \] ### Final Answer: Thus, the value of \( f(1) \) is: \[ \boxed{5} \]

To solve the given problem, we need to evaluate the integral and find the function \( f(x) \) in the form \( ax^2 + bx + c \) such that \( f(1) \) can be computed. ### Step-by-Step Solution: 1. **Set Up the Integral**: We start with the integral: \[ I = \int \frac{2x + 3}{x(x + 1)(x + 2)(x + 3) + 1} \, dx ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the constant of integration, then the value of f(1) is

If f(x)=ax^(2)+bx+c and f(x+1)=f(x)+x+1 , then the value of (a+b) is __

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If the integral int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

int(x+1)/(x(1+x e^x)^2)dx=log|1-f(x)|+f(x)+c , then f(x)=

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If the integral I=int(x sqrtx-3x+3sqrtx-1)/(x-2sqrtx+1)dx=f(x)+C (where, x gt0 and C is the constant of integration) and f(1)=(-1)/(3) , then the value of f(9) is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

    Text Solution

    |

  2. Evaluate: int((2x+1))/((x^(2)+4x+1)^(3//2))dx

    Text Solution

    |

  3. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  4. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |

  5. Evaluate :int(dx)/(xsqrt(x^(6)+1)) equals

    Text Solution

    |

  6. int(dx)/((1+sqrtx)^(2010))=2[(1)/(alpha(1+sqrtx)^(alpha))-(1)/(beta(1+...

    Text Solution

    |

  7. int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(-1)(f(x))+B, where A, B are co...

    Text Solution

    |

  8. If intsqrt(x+sqrt(x^(2)+2))dx=A{x+sqrt(x^(2)+2)}^(3//2)+(B)/(sqrt(x+sq...

    Text Solution

    |

  9. int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

    Text Solution

    |

  10. int(dx)/(x^(2)sqrt(16-x^(2))) has the value equal to

    Text Solution

    |

  11. Evaluate int(tan(pi/4 -x))/(cos^(2)x sqrt(tan^(3)x+tan^(2) x+ tan x))d...

    Text Solution

    |

  12. int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

    Text Solution

    |

  13. int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3)+2x^(2)+5)dx=

    Text Solution

    |

  14. int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

    Text Solution

    |

  15. If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0), and f...

    Text Solution

    |

  16. If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))), then I equals

    Text Solution

    |

  17. If I=intx^(27)(6x^(2)+5x+4)(x^(2)+x+1)^(6)dx=f(x)+C, then f(x) is eq...

    Text Solution

    |

  18. int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals

    Text Solution

    |

  19. int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))=(1)/(2)log|(sqrt(x+(1)...

    Text Solution

    |

  20. int(d(x^(3)))/(x^(3)(x^(n)+1)) equals

    Text Solution

    |