Home
Class 12
MATHS
Evaluate :int(dx)/(xsqrt(x^(6)+1)) equal...

Evaluate :`int(dx)/(xsqrt(x^(6)+1))` equals

A

`sec^(-1)x^(3)+C`

B

`(1)/(6)log((sqrt(x^(6)+1)-1)/(sqrt(x^(6)+1)+1))+C`

C

`(1)/(3)log((sqrt(x^(3)+1)-1)/(sqrt(x^(3)+1)+1))+C`

D

`(1)/(3)log((sqrt(x^(3)+1)+1)/(sqrt(x^(3)+1)-1))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{x \sqrt{x^6 + 1}}, \] we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form. We can multiply and divide the integrand by \(x^5\): \[ I = \int \frac{x^5}{x^6 \sqrt{x^6 + 1}} \, dx = \int \frac{x^5}{x^6 \sqrt{x^6 + 1}} \, dx. \] ### Step 2: Substitution Next, we make the substitution \(t^2 = x^6 + 1\). Then, differentiating both sides gives: \[ 2t \, dt = 6x^5 \, dx \quad \Rightarrow \quad dx = \frac{t \, dt}{3x^5}. \] Now, we also need to express \(x^5\) in terms of \(t\). From our substitution, we have: \[ x^6 = t^2 - 1 \quad \Rightarrow \quad x^5 = (t^2 - 1)^{5/6}. \] ### Step 3: Substitute Back into the Integral Substituting \(dx\) and \(x^5\) back into the integral gives: \[ I = \int \frac{(t^2 - 1)^{5/6}}{(t^2 - 1)^{3/2} \cdot t} \cdot \frac{t \, dt}{3(t^2 - 1)^{5/6}}. \] The \( (t^2 - 1)^{5/6} \) terms cancel out, and we are left with: \[ I = \frac{1}{3} \int \frac{dt}{t^2 - 1}. \] ### Step 4: Integrate The integral \(\int \frac{dt}{t^2 - 1}\) can be solved using partial fractions: \[ \frac{1}{t^2 - 1} = \frac{1}{2} \left( \frac{1}{t - 1} - \frac{1}{t + 1} \right). \] Thus, we have: \[ I = \frac{1}{3} \cdot \frac{1}{2} \left( \ln |t - 1| - \ln |t + 1| \right) + C = \frac{1}{6} \ln \left| \frac{t - 1}{t + 1} \right| + C. \] ### Step 5: Substitute Back for \(t\) Now, substituting back \(t = \sqrt{x^6 + 1}\): \[ I = \frac{1}{6} \ln \left| \frac{\sqrt{x^6 + 1} - 1}{\sqrt{x^6 + 1} + 1} \right| + C. \] ### Final Answer Thus, the final answer is: \[ I = \frac{1}{6} \ln \left| \frac{\sqrt{x^6 + 1} - 1}{\sqrt{x^6 + 1} + 1} \right| + C. \]

To evaluate the integral \[ I = \int \frac{dx}{x \sqrt{x^6 + 1}}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(xsqrt(x^(6)-16))=

Evaluate : int(dx)/(xsqrt(x^4-1))

Evaluate: int(x^2)/(sqrt(1-x^6))dx

Evaluate: int(x^2)/(sqrt(1-x^6))dx

The value of int(dx)/(xsqrt(1-x^(3))) is equal to

int (dx)/(x(x^(2)+1))" equals "

Evaluate int(dx)/(cos xsqrt(cos2x)) .

int (1)/(xsqrt(x))dx

Evaluate: int1/(xsqrt(x^2-1))dx

Evaluate: int1/(xsqrt((x^6+1)))dx

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of th...

    Text Solution

    |

  2. The integral intsqrt(cotx)e^(sqrt(sinx))sqrt(cosx)dx equals

    Text Solution

    |

  3. Evaluate :int(dx)/(xsqrt(x^(6)+1)) equals

    Text Solution

    |

  4. int(dx)/((1+sqrtx)^(2010))=2[(1)/(alpha(1+sqrtx)^(alpha))-(1)/(beta(1+...

    Text Solution

    |

  5. int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(-1)(f(x))+B, where A, B are co...

    Text Solution

    |

  6. If intsqrt(x+sqrt(x^(2)+2))dx=A{x+sqrt(x^(2)+2)}^(3//2)+(B)/(sqrt(x+sq...

    Text Solution

    |

  7. int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

    Text Solution

    |

  8. int(dx)/(x^(2)sqrt(16-x^(2))) has the value equal to

    Text Solution

    |

  9. Evaluate int(tan(pi/4 -x))/(cos^(2)x sqrt(tan^(3)x+tan^(2) x+ tan x))d...

    Text Solution

    |

  10. int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

    Text Solution

    |

  11. int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3)+2x^(2)+5)dx=

    Text Solution

    |

  12. int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

    Text Solution

    |

  13. If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0), and f...

    Text Solution

    |

  14. If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))), then I equals

    Text Solution

    |

  15. If I=intx^(27)(6x^(2)+5x+4)(x^(2)+x+1)^(6)dx=f(x)+C, then f(x) is eq...

    Text Solution

    |

  16. int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals

    Text Solution

    |

  17. int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))=(1)/(2)log|(sqrt(x+(1)...

    Text Solution

    |

  18. int(d(x^(3)))/(x^(3)(x^(n)+1)) equals

    Text Solution

    |

  19. int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to

    Text Solution

    |

  20. int(x^3-x)/(1+x^6)dx is equal to

    Text Solution

    |