Home
Class 12
MATHS
int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(...

`int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(-1)(f(x))+B`, where A, B are contants. Then the range of Af(x) is

A

`[-1,1]`

B

`[-sqrt2,sqrt2]`

C

`[0,1]`

D

`[-1,0]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin\left(\frac{\pi}{4} - x\right)dx}{2 + \sin(2x)}\), we will follow these steps: ### Step 1: Simplify the integrand Using the sine subtraction formula, we can rewrite \(\sin\left(\frac{\pi}{4} - x\right)\): \[ \sin\left(\frac{\pi}{4} - x\right) = \sin\left(\frac{\pi}{4}\right)\cos(x) - \cos\left(\frac{\pi}{4}\right)\sin(x) = \frac{1}{\sqrt{2}}\cos(x) - \frac{1}{\sqrt{2}}\sin(x) \] Thus, the integral becomes: \[ \int \frac{\frac{1}{\sqrt{2}}(\cos(x) - \sin(x))dx}{2 + \sin(2x)} \] ### Step 2: Rewrite \(\sin(2x)\) Recall that \(\sin(2x) = 2\sin(x)\cos(x)\). Therefore, we can rewrite the denominator: \[ 2 + \sin(2x) = 2 + 2\sin(x)\cos(x) = 2(1 + \sin(x)\cos(x)) \] Now the integral can be expressed as: \[ \frac{1}{\sqrt{2}} \int \frac{\cos(x) - \sin(x)}{2(1 + \sin(x)\cos(x))}dx \] ### Step 3: Split the integral We can split the integral into two parts: \[ \frac{1}{\sqrt{2}} \left( \int \frac{\cos(x)}{2(1 + \sin(x)\cos(x))}dx - \int \frac{\sin(x)}{2(1 + \sin(x)\cos(x))}dx \right) \] ### Step 4: Use substitution Let \(u = \sin(x) + \cos(x)\). Then, we differentiate: \[ du = (\cos(x) - \sin(x))dx \] Now we can express the integrals in terms of \(u\). ### Step 5: Evaluate the integrals The integrals can be evaluated using the substitution \(u\): \[ \int \frac{du}{2(1 + \frac{u^2 - 1}{2})} = \int \frac{du}{u^2 + 1} \] This integral evaluates to: \[ \frac{1}{2} \tan^{-1}(u) + C \] ### Step 6: Substitute back Substituting back \(u = \sin(x) + \cos(x)\): \[ \frac{1}{\sqrt{2}} \left( \frac{1}{2} \tan^{-1}(\sin(x) + \cos(x)) + C \right) \] ### Step 7: Identify constants Let \(A = \frac{1}{2\sqrt{2}}\) and \(B = \frac{C}{\sqrt{2}}\). Thus, we have: \[ \int \frac{\sin\left(\frac{\pi}{4} - x\right)dx}{2 + \sin(2x)} = A \tan^{-1}(\sin(x) + \cos(x)) + B \] ### Step 8: Determine the range of \(Af(x)\) Now, we need to find the range of \(Af(x)\), where \(f(x) = \sin(x) + \cos(x)\). The maximum and minimum values of \(\sin(x) + \cos(x)\) can be found using the identity: \[ \sin(x) + \cos(x) = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) \] Thus, the range of \(f(x)\) is \([- \sqrt{2}, \sqrt{2}]\). ### Step 9: Find the range of \(Af(x)\) Multiplying by \(A = \frac{1}{2\sqrt{2}}\): \[ \text{Range of } Af(x) = \left[-\frac{1}{2}, \frac{1}{2}\right] \] ### Final Answer The range of \(Af(x)\) is \([- \frac{1}{2}, \frac{1}{2}]\). ---

To solve the integral \(\int \frac{\sin\left(\frac{\pi}{4} - x\right)dx}{2 + \sin(2x)}\), we will follow these steps: ### Step 1: Simplify the integrand Using the sine subtraction formula, we can rewrite \(\sin\left(\frac{\pi}{4} - x\right)\): \[ \sin\left(\frac{\pi}{4} - x\right) = \sin\left(\frac{\pi}{4}\right)\cos(x) - \cos\left(\frac{\pi}{4}\right)\sin(x) = \frac{1}{\sqrt{2}}\cos(x) - \frac{1}{\sqrt{2}}\sin(x) \] Thus, the integral becomes: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

Evaluate: int_0^(pi/2) (sin2x tan^(-1)(sinx))dx

The integral I=int(sin(x^(2))+2x^(2)cos(x^(2)))dx (where =xh(x)+c , C is the constant of integration). If the range of H(x) is [a, b], then the value of a+2b is equal to

int (sin2x) dx/(1+sin^4x)

Consider A =int_(0)^((pi)/(4))(sin(2x))/(x)dx, then

If int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3)) + C , then :

The integral int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x)) equals

If int _(0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin (b), where a and b are positive integers. Find the value of (a+b).

int (dx)/(sin(x-a)sin(x-b)

int(sin x cos x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. Evaluate :int(dx)/(xsqrt(x^(6)+1)) equals

    Text Solution

    |

  2. int(dx)/((1+sqrtx)^(2010))=2[(1)/(alpha(1+sqrtx)^(alpha))-(1)/(beta(1+...

    Text Solution

    |

  3. int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(-1)(f(x))+B, where A, B are co...

    Text Solution

    |

  4. If intsqrt(x+sqrt(x^(2)+2))dx=A{x+sqrt(x^(2)+2)}^(3//2)+(B)/(sqrt(x+sq...

    Text Solution

    |

  5. int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

    Text Solution

    |

  6. int(dx)/(x^(2)sqrt(16-x^(2))) has the value equal to

    Text Solution

    |

  7. Evaluate int(tan(pi/4 -x))/(cos^(2)x sqrt(tan^(3)x+tan^(2) x+ tan x))d...

    Text Solution

    |

  8. int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

    Text Solution

    |

  9. int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3)+2x^(2)+5)dx=

    Text Solution

    |

  10. int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

    Text Solution

    |

  11. If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0), and f...

    Text Solution

    |

  12. If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))), then I equals

    Text Solution

    |

  13. If I=intx^(27)(6x^(2)+5x+4)(x^(2)+x+1)^(6)dx=f(x)+C, then f(x) is eq...

    Text Solution

    |

  14. int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals

    Text Solution

    |

  15. int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))=(1)/(2)log|(sqrt(x+(1)...

    Text Solution

    |

  16. int(d(x^(3)))/(x^(3)(x^(n)+1)) equals

    Text Solution

    |

  17. int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to

    Text Solution

    |

  18. int(x^3-x)/(1+x^6)dx is equal to

    Text Solution

    |

  19. int (x^3-1)/((x^4+1)(x+1)) dx is

    Text Solution

    |

  20. The value of int(cos^(3)x)/(sin^(2)x+sinx)dx is equal to

    Text Solution

    |