Home
Class 12
MATHS
int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^...

`int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx` is equal to

A

`2sin^(-1)sqrt(x-(1)/(x)+2)+c`

B

`2cos^(-1)sqrt(x-(1)/(x)+2)+c`

C

`sin^(-1)sqrt(x-(1)/(x)+2)+c`

D

`cos^(-1)sqrt(x-(1)/(x)+2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x^2 + 1}{x \sqrt{x^2 + 2x - 1} \sqrt{1 - x^2 - x}} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integral We start by rewriting the integral: \[ I = \int \frac{x^2 + 1}{x \sqrt{x^2 + 2x - 1} \sqrt{1 - x^2 - x}} \, dx. \] ### Step 2: Factor Out Common Terms We can factor \(x\) out from the square roots in the denominator: \[ I = \int \frac{x^2 + 1}{x \cdot \sqrt{x} \cdot \sqrt{x + 2 - \frac{1}{x}} \cdot \sqrt{\frac{1}{x} - x - 1}} \, dx. \] ### Step 3: Rewrite the Numerator Next, we take \(x^2\) common from the numerator: \[ I = \int \frac{x^2(1 + \frac{1}{x^2})}{x^2 \cdot \sqrt{x + 2 - \frac{1}{x}} \cdot \sqrt{\frac{1}{x} - x - 1}} \, dx. \] ### Step 4: Cancel Out \(x^2\) The \(x^2\) in the numerator and denominator cancels out: \[ I = \int \frac{1 + \frac{1}{x^2}}{\sqrt{x + 2 - \frac{1}{x}} \cdot \sqrt{\frac{1}{x} - x - 1}} \, dx. \] ### Step 5: Substitution Now, we will apply substitution. Let \[ t = \sqrt{x + 2 - \frac{1}{x}}. \] Differentiating both sides gives: \[ dt = \left(\frac{1}{2\sqrt{x + 2 - \frac{1}{x}}}\right) \left(1 + \frac{1}{x^2}\right) dx. \] ### Step 6: Express \(dx\) in Terms of \(dt\) From the above, we can express \(dx\): \[ dx = 2t \cdot dt \cdot \frac{1}{1 + \frac{1}{x^2}}. \] ### Step 7: Substitute Back into the Integral Substituting \(dx\) back into the integral gives: \[ I = \int \frac{2t \cdot dt}{\sqrt{1 - t^2}}. \] ### Step 8: Solve the Integral The integral now resembles the standard form: \[ \int \frac{dt}{\sqrt{1 - t^2}} = \sin^{-1}(t) + C. \] Thus, \[ I = 2 \sin^{-1}(t) + C. \] ### Step 9: Resubstitute \(t\) Now, we substitute back for \(t\): \[ I = 2 \sin^{-1}\left(\sqrt{x + 2 - \frac{1}{x}}\right) + C. \] ### Final Answer Therefore, the solution to the integral is: \[ I = 2 \sin^{-1}\left(\sqrt{x + 2 - \frac{1}{x}}\right) + C. \]

To solve the integral \[ I = \int \frac{x^2 + 1}{x \sqrt{x^2 + 2x - 1} \sqrt{1 - x^2 - x}} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(x^2-1)/(xsqrt(1+x^4)) dx

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

int(2x-1)/(sqrt(x^(2)-x-1))dx

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

int(1)/((x-1)sqrt(x^(2)-1))dx equals

int(x+1)/(sqrt(2x^(2)+x-3))dx

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Single Correct Answer Type
  1. int(sin((pi)/(4)-x)dx)/(2+sin2x)=A tan^(-1)(f(x))+B, where A, B are co...

    Text Solution

    |

  2. If intsqrt(x+sqrt(x^(2)+2))dx=A{x+sqrt(x^(2)+2)}^(3//2)+(B)/(sqrt(x+sq...

    Text Solution

    |

  3. int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

    Text Solution

    |

  4. int(dx)/(x^(2)sqrt(16-x^(2))) has the value equal to

    Text Solution

    |

  5. Evaluate int(tan(pi/4 -x))/(cos^(2)x sqrt(tan^(3)x+tan^(2) x+ tan x))d...

    Text Solution

    |

  6. int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

    Text Solution

    |

  7. int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3)+2x^(2)+5)dx=

    Text Solution

    |

  8. int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

    Text Solution

    |

  9. If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0), and f...

    Text Solution

    |

  10. If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))), then I equals

    Text Solution

    |

  11. If I=intx^(27)(6x^(2)+5x+4)(x^(2)+x+1)^(6)dx=f(x)+C, then f(x) is eq...

    Text Solution

    |

  12. int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals

    Text Solution

    |

  13. int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))=(1)/(2)log|(sqrt(x+(1)...

    Text Solution

    |

  14. int(d(x^(3)))/(x^(3)(x^(n)+1)) equals

    Text Solution

    |

  15. int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to

    Text Solution

    |

  16. int(x^3-x)/(1+x^6)dx is equal to

    Text Solution

    |

  17. int (x^3-1)/((x^4+1)(x+1)) dx is

    Text Solution

    |

  18. The value of int(cos^(3)x)/(sin^(2)x+sinx)dx is equal to

    Text Solution

    |

  19. int(x^(3)-1)/(x^(3)+x) dx is equal to:

    Text Solution

    |

  20. int((2+secx)secx)/((1+2secx)^2)dx=

    Text Solution

    |