Home
Class 12
MATHS
int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xs...

`int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx` is

A

`2tan^(-1)(x+sqrt(1-x^(2)))+c`

B

`tan^(-1)(x+sqrt(1-x^(2)))+c`

C

`2tan^(-1)(x-sqrt(1-x^(2)))+c`

D

`2cot^(-1)(x+sqrt(1-x^(2)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sqrt{1 - x^2} - x}{\sqrt{1 - x^2}(1 + x\sqrt{1 - x^2})} \, dx, \] we will use a trigonometric substitution. Let's proceed step by step. ### Step 1: Trigonometric Substitution Let \( x = \sin \theta \). Then, we have: \[ dx = \cos \theta \, d\theta. \] Also, we can express \( \sqrt{1 - x^2} \) as: \[ \sqrt{1 - x^2} = \sqrt{1 - \sin^2 \theta} = \cos \theta. \] ### Step 2: Substitute in the Integral Substituting \( x \) and \( dx \) into the integral, we get: \[ I = \int \frac{\cos \theta - \sin \theta}{\cos \theta(1 + \sin \theta \cos \theta)} \cos \theta \, d\theta. \] This simplifies to: \[ I = \int \frac{\cos^2 \theta - \sin \theta \cos \theta}{\cos \theta(1 + \sin \theta \cos \theta)} \, d\theta. \] ### Step 3: Simplify the Integral Now, we can simplify the integral: \[ I = \int \frac{\cos^2 \theta - \sin \theta \cos \theta}{1 + \sin \theta \cos \theta} \, d\theta. \] ### Step 4: Factor and Rewrite We can factor out \( \cos \theta \): \[ I = \int \frac{\cos \theta (\cos \theta - \sin \theta)}{1 + \sin \theta \cos \theta} \, d\theta. \] ### Step 5: Further Simplification Now, let's multiply the numerator and denominator by 2: \[ I = \int \frac{2(\cos \theta - \sin \theta)}{2 + 2\sin \theta \cos \theta} \, d\theta. \] ### Step 6: Recognize the Form Notice that the denominator can be rewritten as: \[ 2 + 2\sin \theta \cos \theta = 2(1 + \sin \theta \cos \theta). \] Thus, we can simplify \( I \): \[ I = \int \frac{\cos \theta - \sin \theta}{1 + \sin \theta \cos \theta} \, d\theta. \] ### Step 7: Substitution Let \( t = \cos \theta + \sin \theta \). Then, we have: \[ dt = (\cos \theta - \sin \theta) \, d\theta. \] ### Step 8: Change of Variables Now, substituting \( t \) into the integral gives us: \[ I = \int \frac{1}{1 + t^2} \, dt. \] ### Step 9: Solve the Integral The integral of \( \frac{1}{1 + t^2} \) is: \[ \int \frac{1}{1 + t^2} \, dt = \tan^{-1}(t) + C. \] ### Step 10: Back Substitute Substituting back for \( t \): \[ I = \tan^{-1}(\cos \theta + \sin \theta) + C. \] ### Step 11: Final Back Substitution Using the original substitution \( x = \sin \theta \): \[ \cos \theta = \sqrt{1 - x^2}, \quad \sin \theta = x. \] Thus, we have: \[ I = \tan^{-1}(\sqrt{1 - x^2} + x) + C. \] ### Final Answer: \[ \int \frac{\sqrt{1 - x^2} - x}{\sqrt{1 - x^2}(1 + x\sqrt{1 - x^2})} \, dx = \tan^{-1}(\sqrt{1 - x^2} + x) + C. \]

To solve the integral \[ I = \int \frac{\sqrt{1 - x^2} - x}{\sqrt{1 - x^2}(1 + x\sqrt{1 - x^2})} \, dx, \] we will use a trigonometric substitution. Let's proceed step by step. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

int(sqrt(1-x^(2))+1)/(sqrt(1-x)+1/sqrt(1+x))dx

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

int(dx)/(sqrt(1-x^(2))(sin^(-1)x)^(2))

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

Evaluate int_(0)^(1)1/(sqrt(1-x^(2))"sin"^(-1)(2xsqrt(1-x^(2)))dx .

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx