Home
Class 12
MATHS
If I=intx^(27)(6x^(2)+5x+4)(x^(2)+x+1)^...

If `I=intx^(27)(6x^(2)+5x+4)(x^(2)+x+1)^(6)dx=f(x)+C`, then f(x) is equal to

A

`(x^(4)(1+x+x^(2))^(7))/(7)+C`

B

`(x^(28)(1+x+x^(2))^(7))/(7)+C`

C

`(x^(28)(1+x+x^(2))^(7))/(28)+C`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x^{27} (6x^2 + 5x + 4)(x^2 + x + 1)^6 \, dx \) and express it in the form \( I = f(x) + C \), we can follow these steps: ### Step 1: Rearranging the Integral We can rewrite the integral by separating \( x^{27} \) as \( x^{24} \cdot x^3 \): \[ I = \int x^{24} (6x^2 + 5x + 4)(x^2 + x + 1)^6 \, dx \] ### Step 2: Factor out \( x^{24} \) Next, we factor \( x^{24} \) out of the polynomial: \[ I = \int x^{24} (x^3)(6x^2 + 5x + 4)(x^2 + x + 1)^6 \, dx \] ### Step 3: Substitution We will use the substitution: \[ t = x^6 + x^5 + x^4 \] Now, we need to find \( dt \): \[ dt = (6x^5 + 5x^4 + 4x^3) \, dx \] This means we can express our integral in terms of \( t \). ### Step 4: Rewrite the Integral Now we can rewrite the integral using our substitution: \[ I = \int t^6 \, dt \] ### Step 5: Integrate Using the power rule for integration: \[ \int t^n \, dt = \frac{t^{n+1}}{n+1} + C \] we find: \[ I = \frac{t^7}{7} + C \] ### Step 6: Substitute Back Substituting back for \( t \): \[ I = \frac{(x^6 + x^5 + x^4)^7}{7} + C \] ### Step 7: Simplifying We can factor out \( x^4 \) from the expression: \[ I = \frac{x^{28}(1 + x + \frac{1}{x^2})^7}{7} + C \] ### Final Expression for \( f(x) \) Thus, we can express \( f(x) \) as: \[ f(x) = \frac{(x^6 + x^5 + x^4)^7}{7} \]

To solve the integral \( I = \int x^{27} (6x^2 + 5x + 4)(x^2 + x + 1)^6 \, dx \) and express it in the form \( I = f(x) + C \), we can follow these steps: ### Step 1: Rearranging the Integral We can rewrite the integral by separating \( x^{27} \) as \( x^{24} \cdot x^3 \): \[ I = \int x^{24} (6x^2 + 5x + 4)(x^2 + x + 1)^6 \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2x^(6)+3x^(4)+4x^(2) , then f'(x) is

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

If f (x)=((x+1)^(7)sqrt(1+x ^(2)))/((x^(2) -x+1)^(6)), then the value of f'(0) is equal to:

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to

Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

int ((cos 6x+6cos 4x+ 15 cos 2x+10)/(10 cos ^(2) x +5 cos x cos 3 x+ cos x cos 5 x ))dx =f (x)+C, then f (10) is equal to:

Let f(x) is a continuous function symmetric about the lines x=1a n dx=2. If int_0^(2)f(x)dx=3 and int_0^(50)f(x)=I , then [sqrt(I)] is equal to (where [.] is G.I.F.) (a) 5 (b) 8 (c) 7 (d) 6

intx^2sqrt(x^6-1)dx

Consider int(3x^(4)+2x^(2)+1)/(sqrt(x^(4)+x^(2)+1))dx=f(x) . If f(1)=sqrt3 , then (f(2))^(2) is equal to

If f(x)=|x^2-5x+6|, then f'(x) equals