Home
Class 12
MATHS
int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx ...

`int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx` equals

A

`(1)/(2)ln.(x)/(lnx)-(1)/(4)ln(ln^(2)x-x^(2))+C`

B

`(1)/(4)ln((lnx-x)/(lnx+x))-(1)/(2)tan^(-1)((lnx)/(x))+C`

C

`(1)/(4)ln((lnx-x)/(lnx+x))+(1)/(2)tan^(-1)((lnx)/(x))+C`

D

`(1)/(4)(ln((lnx-x)/(lnx+x))+tan^(-1)((lnx)/(x)))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x^2 (1 - \log x)}{\log^4 x - x^4} \, dx, \] we will follow a series of steps to simplify and evaluate the integral. ### Step 1: Simplify the Denominator We start by rewriting the denominator: \[ \log^4 x - x^4 = (\log^2 x - x^2)(\log^2 x + x^2). \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral as: \[ I = \int \frac{x^2 (1 - \log x)}{(\log^2 x - x^2)(\log^2 x + x^2)} \, dx. \] ### Step 3: Substitute \( t = \frac{\log x}{x} \) To simplify the expression, we will use the substitution \( t = \frac{\log x}{x} \). Then, we differentiate: \[ dt = \left( \frac{1}{x} - \frac{\log x}{x^2} \right) dx = \frac{1 - \log x}{x^2} \, dx. \] This implies: \[ dx = \frac{x^2}{1 - \log x} dt. \] ### Step 4: Substitute into the Integral Substituting \( t \) and \( dx \) into the integral gives: \[ I = \int \frac{x^2 (1 - \log x)}{(\log^2 x - x^2)(\log^2 x + x^2)} \cdot \frac{x^2}{1 - \log x} dt. \] This simplifies to: \[ I = \int \frac{x^4}{(\log^2 x - x^2)(\log^2 x + x^2)} dt. \] ### Step 5: Rewrite \( \log x \) in terms of \( t \) Using the substitution \( t = \frac{\log x}{x} \), we can express \( \log x \) as \( x t \). Thus, we can rewrite our integral in terms of \( t \). ### Step 6: Factor the Denominator Now, we can factor the denominator in terms of \( t \): \[ \log^2 x = (xt)^2 = x^2 t^2. \] This gives us: \[ I = \int \frac{x^4}{(x^2 t^2 - x^2)(x^2 t^2 + x^2)} dt = \int \frac{x^2}{(t^2 - 1)(t^2 + 1)} dt. \] ### Step 7: Separate the Integral We can separate the integral: \[ I = \frac{1}{2} \int \left( \frac{1}{t^2 - 1} - \frac{1}{t^2 + 1} \right) dt. \] ### Step 8: Integrate Using standard results for integration: 1. \(\int \frac{dt}{t^2 - 1} = \frac{1}{2} \log \left| \frac{t - 1}{t + 1} \right| + C\) 2. \(\int \frac{dt}{t^2 + 1} = \tan^{-1}(t) + C\) We can now evaluate the integral: \[ I = \frac{1}{2} \left( \frac{1}{2} \log \left| \frac{t - 1}{t + 1} \right| - \tan^{-1}(t) \right) + C. \] ### Step 9: Substitute Back Finally, substitute back \( t = \frac{\log x}{x} \): \[ I = \frac{1}{4} \log \left| \frac{\frac{\log x}{x} - 1}{\frac{\log x}{x} + 1} \right| - \frac{1}{2} \tan^{-1}\left(\frac{\log x}{x}\right) + C. \] ### Final Result Thus, the result of the integral is: \[ I = \frac{1}{4} \log \left| \frac{\log x - x}{\log x + x} \right| - \frac{1}{2} \tan^{-1}\left(\frac{\log x}{x}\right) + C. \]

To solve the integral \[ I = \int \frac{x^2 (1 - \log x)}{\log^4 x - x^4} \, dx, \] we will follow a series of steps to simplify and evaluate the integral. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(x(1+(logx)^(2))) equals

int(logx/(1+logx)^2)dx

int(dx)/(x.logx.log(logx))=

int((x+1)(x+logx)^2)/(2x)dx

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

The integral int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx is equal to

int(log(x+1)-logx)/(x(x+1))dx is equal to :

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx