Home
Class 12
MATHS
int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^...

`int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))=(1)/(2)log|(sqrt(x+(1)/(x)+1-1))/(sqrt(x+(1)/(x)+1+1))|-A+c.`
Then the value of A is equal to

A

`cos^(-1)sqrt(1+(1)/(x))`

B

`tan^(-1)sqrt(x+(1)/(x)+1)`

C

`cot^(-1)sqrt(x+(1)/(x))`

D

`sin^(-1)sqrt(x+(1)/(x)+1)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have `int(x(x-1))/((x^(2)+)(x+1)sqrt(x^(3)+x^(2)+x))dx`
`=int(x(x^(2)-1))/((x^(2)+1)(x+1)^(2)sqrt(x^(3)+x^(2)+x))dx`
`=int(x^(3)(1-(1)/(x^(2))))/(x^(3)(x+(1)/(x))(sqrtx+(1)/(sqrtx))^(2)sqrt(x+(1)/(x)+1))dx`
`=int((1-(1)/(x^(2))))/((x+(1)/(x))(x+(1)/(x)+2)sqrt(x+(1)/(x)+1))dx`
`I=int(2t)/((t^(2)-1)(t^(2)+1)sqrt(t^(2)))dt`
where `x+(1)/(x)+1=t^(2)`
`=int(2)/((t^(2)-1)(t^(2)+1))dt`
`=int(1)/(t^(2)-1)dt-int(1)/(t^(2)+1)dt`
`=(1)/(2)log|(t-1)/(t+1)|-tan^(-1)t+c`
`=(1)/(2)log|(sqrt(x+(1)/(x)+1)-1)/(sqrt(x+(1)/(x)+1+1))|-tan^(-1)sqrt(x+(1)/(x)+1)+c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of lim_(x to oo) tan^(-1)sqrt(f(x)) is

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

int_1^2 (x-1)/(x+1). 1/sqrt(x^3+x^2+x)dx

y=log((sqrt(x+1)+1]/(sqrt(x+1)-1))

int(sqrt(1-x^(2))+1)/(sqrt(1-x)+1/sqrt(1+x))dx

int(1)/((x-1)sqrt(x^(2)-1))dx equals

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))