Home
Class 12
MATHS
Evaluate : int(x^(2)-4)/(x^(4)+9x^(2)+16...

Evaluate : `int(x^(2)-4)/(x^(4)+9x^(2)+16)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{x^2 - 4}{x^4 + 9x^2 + 16} \, dx, \] we can follow these steps: ### Step 1: Factor the Denominator First, we rewrite the denominator \(x^4 + 9x^2 + 16\). We can treat this as a quadratic in terms of \(x^2\): Let \(u = x^2\), then the expression becomes: \[ u^2 + 9u + 16. \] Now we can factor this quadratic. The factors of \(16\) that add up to \(9\) are \(1\) and \(8\): \[ u^2 + 9u + 16 = (u + 1)(u + 8) = (x^2 + 1)(x^2 + 8). \] Thus, we can rewrite the integral as: \[ \int \frac{x^2 - 4}{(x^2 + 1)(x^2 + 8)} \, dx. \] ### Step 2: Partial Fraction Decomposition Next, we perform partial fraction decomposition on the integrand: \[ \frac{x^2 - 4}{(x^2 + 1)(x^2 + 8)} = \frac{A}{x^2 + 1} + \frac{B}{x^2 + 8}. \] Multiplying through by the denominator \((x^2 + 1)(x^2 + 8)\) gives: \[ x^2 - 4 = A(x^2 + 8) + B(x^2 + 1). \] Expanding the right-hand side: \[ x^2 - 4 = Ax^2 + 8A + Bx^2 + B = (A + B)x^2 + (8A + B). \] ### Step 3: Set Up the System of Equations Now we can set up the system of equations by equating coefficients: 1. \(A + B = 1\) (coefficient of \(x^2\)) 2. \(8A + B = -4\) (constant term) ### Step 4: Solve the System From the first equation, we can express \(B\) in terms of \(A\): \[ B = 1 - A. \] Substituting into the second equation: \[ 8A + (1 - A) = -4, \] \[ 7A + 1 = -4, \] \[ 7A = -5 \implies A = -\frac{5}{7}. \] Now substituting \(A\) back to find \(B\): \[ B = 1 - \left(-\frac{5}{7}\right) = 1 + \frac{5}{7} = \frac{12}{7}. \] ### Step 5: Rewrite the Integral Now we can rewrite the integral as: \[ \int \left( \frac{-\frac{5}{7}}{x^2 + 1} + \frac{\frac{12}{7}}{x^2 + 8} \right) \, dx. \] This can be separated into two integrals: \[ -\frac{5}{7} \int \frac{1}{x^2 + 1} \, dx + \frac{12}{7} \int \frac{1}{x^2 + 8} \, dx. \] ### Step 6: Evaluate the Integrals The integrals can be evaluated as follows: 1. \(\int \frac{1}{x^2 + 1} \, dx = \tan^{-1}(x) + C\). 2. \(\int \frac{1}{x^2 + 8} \, dx = \frac{1}{\sqrt{8}} \tan^{-1}\left(\frac{x}{\sqrt{8}}\right) + C = \frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{x}{2\sqrt{2}}\right) + C\). Putting it all together, we have: \[ -\frac{5}{7} \tan^{-1}(x) + \frac{12}{7} \cdot \frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{x}{2\sqrt{2}}\right) + C. \] ### Final Answer Thus, the final answer is: \[ -\frac{5}{7} \tan^{-1}(x) + \frac{6}{7\sqrt{2}} \tan^{-1}\left(\frac{x}{2\sqrt{2}}\right) + C. \]

To evaluate the integral \[ \int \frac{x^2 - 4}{x^4 + 9x^2 + 16} \, dx, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int (x^(2))/(x^(2)-4) dx

Evaluate: int(x^2+4)/(x^4+16)dx

Evaluate: int(x^2+4)/(x^4+16)dx

Evaluate: int(x^2+4)/(x^4+16)dx

Evaluate: int(x^2+4)/(x^4+16)dx

Evaluate: int(x^2-1)/(x^2+4)dx

Evaluate: int (x^2 - 4)/(x-2) dx

Evaluate: int(x^3)/(x^(16)+4)dx

Evaluate : int1/(4+9x^(2)) dx

Evaluate: int(x^2+9)/(x^4+81)\ dx