Home
Class 12
MATHS
int(d(x^(3)))/(x^(3)(x^(n)+1)) equals...

`int(d(x^(3)))/(x^(3)(x^(n)+1))` equals

A

`(3)/(n)ln((x^(n))/(x^(n)+1))`

B

`(1)/(n)ln((x^(n))/(x^(n)+1))`

C

`(3)/(n)ln((x^(n)+1)/(x^(n)))`

D

`3nln((x^(n+1))/(x^(n)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{d(x^3)}{x^3 (x^n + 1)} \), we can follow these steps: ### Step 1: Rewrite the Integral Start by rewriting the integral in a more manageable form: \[ \int \frac{d(x^3)}{x^3 (x^n + 1)} = \int \frac{3x^2 \, dx}{x^3 (x^n + 1)} \] ### Step 2: Simplify the Expression Now simplify the expression: \[ = \int \frac{3 \, dx}{x (x^n + 1)} \] ### Step 3: Multiply and Divide by \( x^{n-1} \) Next, multiply and divide the integrand by \( x^{n-1} \): \[ = \int \frac{3x^{n-1} \, dx}{x^n (x^n + 1)} \] ### Step 4: Change of Variables Let \( t = x^n \). Then, differentiate both sides: \[ dt = n x^{n-1} \, dx \quad \Rightarrow \quad dx = \frac{dt}{n x^{n-1}} \] Substituting this into the integral gives: \[ = \int \frac{3}{t(t + 1)} \cdot \frac{dt}{n} \] ### Step 5: Factor Out Constants Factor out the constant \( \frac{3}{n} \): \[ = \frac{3}{n} \int \frac{1}{t(t + 1)} \, dt \] ### Step 6: Partial Fraction Decomposition Now, perform partial fraction decomposition on \( \frac{1}{t(t + 1)} \): \[ \frac{1}{t(t + 1)} = \frac{1}{t} - \frac{1}{t + 1} \] ### Step 7: Integrate Integrate the expression: \[ = \frac{3}{n} \left( \int \frac{1}{t} \, dt - \int \frac{1}{t + 1} \, dt \right) \] \[ = \frac{3}{n} \left( \ln |t| - \ln |t + 1| \right) + C \] ### Step 8: Substitute Back Substituting back \( t = x^n \): \[ = \frac{3}{n} \left( \ln |x^n| - \ln |x^n + 1| \right) + C \] \[ = \frac{3}{n} \ln \left( \frac{x^n}{x^n + 1} \right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{d(x^3)}{x^3 (x^n + 1)} = \frac{3}{n} \ln \left( \frac{x^n}{x^n + 1} \right) + C \] ---

To solve the integral \( \int \frac{d(x^3)}{x^3 (x^n + 1)} \), we can follow these steps: ### Step 1: Rewrite the Integral Start by rewriting the integral in a more manageable form: \[ \int \frac{d(x^3)}{x^3 (x^n + 1)} = \int \frac{3x^2 \, dx}{x^3 (x^n + 1)} \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(x^(3)-1)/(x^(3)+x) dx is equal to:

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int (2x^(n-1))/(x^n+3) dx

The value of int(dx)/(x^n(1+x^n)^(1/ n)) is equal to

int(dx)/((x^3-1)^(2/3)x^2) is equal to

The value of int _(0)^(1) ((x ^(6) -x ^(3)))/((2x ^(3)+1)^(3)) dx is equal to :

int_(-3)^(3)(x^(2))/((x^(2)+3)(1+e^(x)))dx is equal to

If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

The value of the integral I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5)) is equal to

int(dx)/(x(x^n+1)) is equal to