Home
Class 12
MATHS
int((x+1)^(2)dx)/(x(x^(2)+1)) is equal t...

`int((x+1)^(2)dx)/(x(x^(2)+1))` is equal to

A

`log_(e)x+c`

B

`log_(e)x+2tan^(-1)x+c`

C

`log_(e).(1)/(x^(2)+1)+c`

D

`log_(e){x(x^(2)+1)}+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{(x+1)^2}{x(x^2+1)} \, dx \), we can follow these steps: ### Step 1: Expand the numerator First, we expand \( (x+1)^2 \): \[ (x+1)^2 = x^2 + 2x + 1 \] So, we can rewrite the integral as: \[ \int \frac{x^2 + 2x + 1}{x(x^2 + 1)} \, dx \] ### Step 2: Separate the integral Now, we can separate the integral into three parts: \[ \int \left( \frac{x^2}{x(x^2 + 1)} + \frac{2x}{x(x^2 + 1)} + \frac{1}{x(x^2 + 1)} \right) \, dx \] This simplifies to: \[ \int \left( \frac{x}{x^2 + 1} + \frac{2}{x^2 + 1} + \frac{1}{x(x^2 + 1)} \right) \, dx \] ### Step 3: Simplify each term Now we can integrate each term separately: 1. For \( \int \frac{x}{x^2 + 1} \, dx \), we can use the substitution \( u = x^2 + 1 \), \( du = 2x \, dx \), hence \( \frac{1}{2} du = x \, dx \): \[ \int \frac{x}{x^2 + 1} \, dx = \frac{1}{2} \ln |x^2 + 1| + C_1 \] 2. For \( \int \frac{2}{x^2 + 1} \, dx \): \[ \int \frac{2}{x^2 + 1} \, dx = 2 \tan^{-1}(x) + C_2 \] 3. For \( \int \frac{1}{x(x^2 + 1)} \, dx \), we can use partial fraction decomposition: \[ \frac{1}{x(x^2 + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} \] Multiplying through by the denominator \( x(x^2 + 1) \) and equating coefficients, we find: \[ 1 = A(x^2 + 1) + (Bx + C)x \] Solving gives \( A = 1 \), \( B = 0 \), and \( C = -1 \). Thus: \[ \int \frac{1}{x(x^2 + 1)} \, dx = \int \left( \frac{1}{x} - \frac{1}{x^2 + 1} \right) \, dx = \ln |x| - \tan^{-1}(x) + C_3 \] ### Step 4: Combine results Now we combine all the integrals: \[ \int \frac{(x+1)^2}{x(x^2 + 1)} \, dx = \frac{1}{2} \ln |x^2 + 1| + 2 \tan^{-1}(x) + \ln |x| - \tan^{-1}(x) + C \] Simplifying, we have: \[ = \frac{1}{2} \ln |x^2 + 1| + \tan^{-1}(x) + \ln |x| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{(x+1)^2}{x(x^2 + 1)} \, dx = \frac{1}{2} \ln |x^2 + 1| + \tan^{-1}(x) + \ln |x| + C \]

To solve the integral \( \int \frac{(x+1)^2}{x(x^2+1)} \, dx \), we can follow these steps: ### Step 1: Expand the numerator First, we expand \( (x+1)^2 \): \[ (x+1)^2 = x^2 + 2x + 1 \] So, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

int( dx )/( x ( x^(7) +1)) is equal to

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

For x >1,int sin^(- 1)((2x)/(1+x^2))dx is equal to

int_(1//3)^(3)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx is equal to

int_(1)^(sqrt(3)) (dx)/(1+x^(2)) is equal to

int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

int (dx)/(x(x^(2)+1))" equals "