Home
Class 12
MATHS
int(x^3-x)/(1+x^6)dx is equal to...

`int(x^3-x)/(1+x^6)dx` is equal to

A

`(1)/(6)log.(x^(4)-x^(2)+1)/(x(x^(2)+1))+C`

B

`(1)/(6)tan^(-1).((x^(2)+1)^(2))/(2)+C`

C

`log.(x^(4)-x^(2)+1)/((1+x^(2))^(2))+C`

D

`tan^(-1).((x^(2)+1)^(2))/(2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^3 - x}{1 + x^6} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We can factor out \( x \) from the numerator: \[ \frac{x^3 - x}{1 + x^6} = \frac{x(x^2 - 1)}{1 + x^6} \] ### Step 2: Substitute \( x^2 = t \) Let \( t = x^2 \). Then, \( dx = \frac{dt}{2\sqrt{t}} \) or \( 2x \, dx = dt \). Thus, \( x = \sqrt{t} \) and \( x^3 = t\sqrt{t} \). The integral becomes: \[ \int \frac{\sqrt{t}(t - 1)}{1 + t^3} \cdot \frac{dt}{2\sqrt{t}} = \frac{1}{2} \int \frac{t - 1}{1 + t^3} \, dt \] ### Step 3: Split the integral Now we can split the integral: \[ \frac{1}{2} \int \frac{t - 1}{1 + t^3} \, dt = \frac{1}{2} \left( \int \frac{t}{1 + t^3} \, dt - \int \frac{1}{1 + t^3} \, dt \right) \] ### Step 4: Integrate \( \int \frac{t}{1 + t^3} \, dt \) For the first integral, we can use the substitution \( u = 1 + t^3 \), which gives \( du = 3t^2 \, dt \) or \( dt = \frac{du}{3t^2} \). Thus, \[ \int \frac{t}{1 + t^3} \, dt = \frac{1}{3} \int \frac{1}{u} \, du = \frac{1}{3} \ln |1 + t^3| + C \] ### Step 5: Integrate \( \int \frac{1}{1 + t^3} \, dt \) For the second integral, we can use partial fractions: \[ \frac{1}{1 + t^3} = \frac{1}{(t + 1)(t^2 - t + 1)} \] This can be decomposed into partial fractions: \[ \frac{A}{t + 1} + \frac{Bt + C}{t^2 - t + 1} \] Solving for \( A, B, C \) gives us the coefficients needed to integrate. ### Step 6: Combine the results After integrating both parts, we combine the results and substitute back \( t = x^2 \) to express everything in terms of \( x \). ### Final Answer The final expression will be: \[ \frac{1}{6} \ln(1 + x^4) - \frac{1}{6} \ln(x^4 - x^2 + 1) + C \]

To solve the integral \( \int \frac{x^3 - x}{1 + x^6} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We can factor out \( x \) from the numerator: \[ \frac{x^3 - x}{1 + x^6} = \frac{x(x^2 - 1)}{1 + x^6} \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(x e^x)/((1+x)^2)dx is equal to

int(x^(3))/(x+1)dx is equal to

int(x^(4)+1)/(x^(6)+1)dx is equal to

int(x^(3)-1)/(x^(3)+x) dx is equal to:

int sqrt((x)/( 1-x))dx is equal to

int(1)/(x(x^(4)-1))dx is equal to

int(x^(3)-x-6)/(x-2)dx

int(1+x)/(1+3sqrt(x))dx is equal to

int( x + sin x )/( 1+ cos x) dx is equal to

The value of int_(-1)^(1)(x|x|)dx is equal to