Home
Class 12
MATHS
int (x^3-1)/((x^4+1)(x+1)) dx is...

`int (x^3-1)/((x^4+1)(x+1)) dx` is

A

`(1)/(4)ln(1+x^(4))+(1)/(3)ln(1+x^(3))+c`

B

`sinx|-sinx+C`

C

`(1)/(4)ln(1+x^(4))-ln(1+x)+c`

D

`(1)/(4)ln(1+x^(4))+ln(1+x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^3 - 1}{(x^4 + 1)(x + 1)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral Let \( I = \int \frac{x^3 - 1}{(x^4 + 1)(x + 1)} \, dx \). ### Step 2: Simplify the Numerator We can rewrite the numerator \( x^3 - 1 \) as \( (x^3 - x^4) + (x^4 - 1) \): \[ x^3 - 1 = x^3 - x^4 + x^4 - 1 = -x^4 + x^3 + (x^4 - 1) \] Thus, we can express the integral as: \[ I = \int \left( \frac{x^3}{(x^4 + 1)(x + 1)} - \frac{1}{(x + 1)} \right) \, dx \] ### Step 3: Split the Integral Now we can split the integral into two parts: \[ I = \int \frac{x^3}{(x^4 + 1)(x + 1)} \, dx - \int \frac{1}{(x + 1)} \, dx \] ### Step 4: Solve the Second Integral The second integral is straightforward: \[ \int \frac{1}{(x + 1)} \, dx = \ln |x + 1| + C_1 \] ### Step 5: Solve the First Integral For the first integral, we will use substitution. Let \( t = x^4 + 1 \). Then, differentiating gives: \[ dt = 4x^3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x^3} \] Substituting \( t \) into the integral: \[ \int \frac{x^3}{(x^4 + 1)(x + 1)} \, dx = \int \frac{x^3}{t(x + 1)} \cdot \frac{dt}{4x^3} = \frac{1}{4} \int \frac{1}{t(x + 1)} \, dt \] ### Step 6: Express \( x + 1 \) in terms of \( t \) From \( t = x^4 + 1 \), we can express \( x \) in terms of \( t \) but it is complicated. Instead, we can evaluate the integral directly: \[ \int \frac{1}{t} \, dt = \ln |t| + C_2 = \ln |x^4 + 1| + C_2 \] Thus, we have: \[ \int \frac{x^3}{(x^4 + 1)(x + 1)} \, dx = \frac{1}{4} \ln |x^4 + 1| + C_2 \] ### Step 7: Combine the Results Combining both parts, we get: \[ I = \frac{1}{4} \ln |x^4 + 1| - \ln |x + 1| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^3 - 1}{(x^4 + 1)(x + 1)} \, dx = \frac{1}{4} \ln |x^4 + 1| - \ln |x + 1| + C \]

To solve the integral \( \int \frac{x^3 - 1}{(x^4 + 1)(x + 1)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral Let \( I = \int \frac{x^3 - 1}{(x^4 + 1)(x + 1)} \, dx \). ### Step 2: Simplify the Numerator We can rewrite the numerator \( x^3 - 1 \) as \( (x^3 - x^4) + (x^4 - 1) \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(x+3)/((x+1)^4)dx

int(x+3)/((x+1)^4)\ dx

Evaluate: int(x^2)/((x-1)^3(x+1))\ dx

int(x^2)/(1-x^4)dx

Evaluate: int(x^2)/((x-1)^3(x+1))dx

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to

(i) \ int \ (x^3-1)/(x^2) \ dx quad (ii)int \ (x^(2//3)+1)dx

int \ x/(x^4-1)dx

(1) int(2x+3)/((x-1)(x-2))dx

(1) int(2x+3)/((x-1)(x-2))dx