Home
Class 12
MATHS
The value of int(cos^(3)x)/(sin^(2)x+sin...

The value of `int(cos^(3)x)/(sin^(2)x+sinx)dx` is equal to

A

`log_(e)|sinx|+sinx+C`

B

`log_(e)|sinx|-sinx+C`

C

`-log_(e)|sinx|-sinx+C`

D

`-log_(e)|sinx|+sinx+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos^3 x}{\sin^2 x + \sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integrand: \[ \int \frac{\cos^3 x}{\sin^2 x + \sin x} \, dx = \int \frac{\cos^3 x}{\sin x (\sin x + 1)} \, dx \] ### Step 2: Express \(\cos^3 x\) in terms of \(\sin x\) Using the identity \(\cos^2 x = 1 - \sin^2 x\), we can express \(\cos^3 x\) as: \[ \cos^3 x = \cos x \cdot \cos^2 x = \cos x (1 - \sin^2 x) \] Thus, the integral becomes: \[ \int \frac{\cos x (1 - \sin^2 x)}{\sin x (\sin x + 1)} \, dx \] ### Step 3: Split the integral We can split the integral into two parts: \[ \int \frac{\cos x}{\sin x (\sin x + 1)} \, dx - \int \frac{\cos x \sin^2 x}{\sin x (\sin x + 1)} \, dx \] This simplifies to: \[ \int \frac{\cos x}{\sin x (\sin x + 1)} \, dx - \int \frac{\cos x \sin x}{\sin x + 1} \, dx \] ### Step 4: Use substitution Let \( u = \sin x \). Then, \( du = \cos x \, dx \). The integrals become: \[ \int \frac{1}{u (u + 1)} \, du - \int \frac{u}{u + 1} \, du \] ### Step 5: Simplify the first integral For the first integral, we can use partial fraction decomposition: \[ \frac{1}{u(u + 1)} = \frac{A}{u} + \frac{B}{u + 1} \] Multiplying through by \( u(u + 1) \) and solving for \( A \) and \( B \): \[ 1 = A(u + 1) + Bu \] Setting \( u = 0 \) gives \( A = 1 \), and setting \( u = -1 \) gives \( B = -1 \). Thus: \[ \frac{1}{u(u + 1)} = \frac{1}{u} - \frac{1}{u + 1} \] Now, we can integrate: \[ \int \left( \frac{1}{u} - \frac{1}{u + 1} \right) du = \ln |u| - \ln |u + 1| + C_1 \] ### Step 6: Simplify the second integral For the second integral: \[ \int \frac{u}{u + 1} \, du = \int \left( 1 - \frac{1}{u + 1} \right) du = u - \ln |u + 1| + C_2 \] ### Step 7: Combine results Combining both integrals, we have: \[ \ln |u| - \ln |u + 1| - (u - \ln |u + 1|) + C \] This simplifies to: \[ \ln |u| - u + C \] ### Step 8: Substitute back Substituting \( u = \sin x \): \[ \ln |\sin x| - \sin x + C \] ### Final Answer Thus, the value of the integral is: \[ \int \frac{\cos^3 x}{\sin^2 x + \sin x} \, dx = \ln |\sin x| - \sin x + C \]

To solve the integral \( \int \frac{\cos^3 x}{\sin^2 x + \sin x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integrand: \[ \int \frac{\cos^3 x}{\sin^2 x + \sin x} \, dx = \int \frac{\cos^3 x}{\sin x (\sin x + 1)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

If int_(0)^(oo)(sinx)/(x)dx=k , then the value of int_(0)^(oo)(sin^(3)x)/(x)dx is equal to

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int(cos2x)/((sinx+cosx)^(2))dx is equal to

int(dx)/( sin^(2)x cos^(2)x) is equal to

l=int(sin2x)/(8sin^(2)x+17cos^(2)x)dx is equal to