Home
Class 12
MATHS
Let f(x)=int(dx)/(e^(x)+8e^(-x)+4e^(-3x)...

Let `f(x)=int(dx)/(e^(x)+8e^(-x)+4e^(-3x)),g(x)=int(dx)/(e^(3x)+8e^(x)+4e^(-x)).`
`int(f(x)-2g(x))dx`

A

`(1)/(4sqrt3)log|(e^(x)-2e^(-x)-2sqrt3)/(e^(x)+2e^(-x)+2sqrt3)|+C`

B

`(1)/(2)tan^(-1)((e^(x)+2e^(-x))/(2))+C`

C

`(1)/(2sqrt3)tan^(-1)((e^(x)-2e^(-x))/(2sqrt3))+C`

D

`(1)/(4)log|(e^(x)+2e^(-x)-2)/(e^(x)+2e^(-x)+2)|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the integral of \( f(x) - 2g(x) \) where: \[ f(x) = \int \frac{dx}{e^x + 8e^{-x} + 4e^{-3x}} \] \[ g(x) = \int \frac{dx}{e^{3x} + 8e^x + 4e^{-x}} \] We need to find: \[ \int (f(x) - 2g(x)) \, dx \] ### Step 1: Rewrite \( f(x) \) and \( g(x) \) First, we rewrite \( f(x) \) and \( g(x) \) to have a common denominator. For \( f(x) \): \[ f(x) = \int \frac{dx}{e^x + 8e^{-x} + 4e^{-3x}} = \int \frac{e^{2x} \, dx}{e^{3x} + 8e^x + 4} \] For \( g(x) \): \[ g(x) = \int \frac{dx}{e^{3x} + 8e^x + 4e^{-x}} = \int \frac{e^{2x} \, dx}{e^{4x} + 8e^{2x} + 4} \] ### Step 2: Combine \( f(x) \) and \( g(x) \) Now, we can express \( f(x) - 2g(x) \): \[ f(x) - 2g(x) = \int \frac{e^{2x} \, dx}{e^{3x} + 8e^x + 4} - 2 \int \frac{e^{2x} \, dx}{e^{4x} + 8e^{2x} + 4} \] ### Step 3: Find a common denominator To combine these integrals, we need a common denominator: \[ = \int \left( \frac{e^{2x}}{e^{3x} + 8e^x + 4} - 2 \cdot \frac{e^{2x}}{e^{4x} + 8e^{2x} + 4} \right) dx \] ### Step 4: Simplify the expression Now we can simplify the expression: \[ = \int \frac{e^{2x}(e^{4x} + 8e^{2x} + 4) - 2e^{2x}(e^{3x} + 8e^x + 4)}{(e^{3x} + 8e^x + 4)(e^{4x} + 8e^{2x} + 4)} \, dx \] ### Step 5: Factor and simplify After simplifying the numerator, we can factor out common terms and simplify further. ### Step 6: Change of variables Let \( t = e^x \), then \( dt = e^x \, dx \) or \( dx = \frac{dt}{t} \). Substitute \( t \) into the integral. ### Step 7: Solve the integral Now we can rewrite the integral in terms of \( t \) and solve it using standard integration techniques. ### Step 8: Back-substitute After finding the integral in terms of \( t \), we will back-substitute \( t = e^x \) to express the final answer in terms of \( x \). ### Final Answer The final answer will be in the form: \[ \frac{1}{2} \tan^{-1} \left( \frac{e^x + 2}{2} \right) + C \]

To solve the problem, we need to compute the integral of \( f(x) - 2g(x) \) where: \[ f(x) = \int \frac{dx}{e^x + 8e^{-x} + 4e^{-3x}} \] \[ g(x) = \int \frac{dx}{e^{3x} + 8e^x + 4e^{-x}} \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+e^(-x)) equals

int (e^(x))/(e^(x) + e^(-x))dx

int (x-2)/(x^(3)).e^(x) dx

int (e^(x)dx)/(e^(2x)+4e^(x)+3)

inte^x/(e^x+e^(-x))dx

int (e^x)/e^(2x-4) dx

int((3x-2)/(x)+e^(x)) dx

int(dx)/(e^x+e^(-x)) is equal to

int (2x^(2) +e^(x))dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)