Home
Class 12
MATHS
Evaluate : intsin4x.e^(tan^(2)x)dx...

Evaluate : `intsin4x.e^(tan^(2)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \sin(4x) e^{\tan^2 x} \, dx\), we can follow these steps: ### Step 1: Rewrite \(\sin(4x)\) Using the double angle formula for sine, we know that: \[ \sin(4x) = 2 \sin(2x) \cos(2x) \] Thus, we can rewrite the integral as: \[ \int \sin(4x) e^{\tan^2 x} \, dx = \int 2 \sin(2x) \cos(2x) e^{\tan^2 x} \, dx \] ### Step 2: Rewrite \(\sin(2x)\) Using the double angle formula again: \[ \sin(2x) = 2 \sin(x) \cos(x) \] Substituting this into the integral gives: \[ \int 2 \sin(2x) \cos(2x) e^{\tan^2 x} \, dx = \int 4 \sin(x) \cos(x) \cos(2x) e^{\tan^2 x} \, dx \] ### Step 3: Substitute for \(\tan^2 x\) Let \(t = \tan^2 x\). Then, differentiating gives: \[ dt = 2 \tan x \sec^2 x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2 \tan x \sec^2 x} \] We also know that \(\tan x = \frac{\sin x}{\cos x}\) and \(\sec^2 x = \frac{1}{\cos^2 x}\). ### Step 4: Rewrite the integral in terms of \(t\) Now we rewrite the integral using the substitution: \[ \int 4 \sin(x) \cos(x) \cos(2x) e^{t} \frac{dt}{2 \tan x \sec^2 x} \] This simplifies to: \[ 2 \int \frac{\sin(x) \cos(x) \cos(2x) e^{t}}{\tan x \sec^2 x} \, dt \] ### Step 5: Simplify the expression Using the identities: \[ \sin(x) = \tan x \cos(x) \] we can simplify: \[ \int 2 \cos(2x) e^{t} \, dt \] ### Step 6: Integrate Now we can integrate: \[ \int e^{t} \, dt = e^{t} + C \] So we have: \[ 2 e^{t} + C \] ### Step 7: Substitute back for \(t\) Substituting back \(t = \tan^2 x\): \[ 2 e^{\tan^2 x} + C \] ### Step 8: Final expression Thus, the final result of the integral is: \[ \int \sin(4x) e^{\tan^2 x} \, dx = 2 e^{\tan^2 x} + C \]

To evaluate the integral \(\int \sin(4x) e^{\tan^2 x} \, dx\), we can follow these steps: ### Step 1: Rewrite \(\sin(4x)\) Using the double angle formula for sine, we know that: \[ \sin(4x) = 2 \sin(2x) \cos(2x) \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int sin 4x.e^(tan^(2)x)dx .

Evaluate intsin7x\dx

Evaluate intsin3x\dx

Evaluate: intsin^4x\ dx

Evaluate: intsin^4x\ dx

Evaluate: intsin2x\ dx

Evaluate: intsin2x\ dx

Evaluate: intsin3x\ dx

Evaluate: intsin^2x\ dx

Evaluate: intsin^4 2x\ dx