Home
Class 12
MATHS
Evaluate : int(log(e)(1+sin^(2)x))/(cos^...

Evaluate : `int(log_(e)(1+sin^(2)x))/(cos^(2)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\ln(1 + \sin^2 x)}{\cos^2 x} \, dx, \] we will use integration by parts. Let's denote: - \( u = \ln(1 + \sin^2 x) \) - \( dv = \sec^2 x \, dx \) ### Step 1: Differentiate \( u \) and integrate \( dv \) First, we need to find \( du \) and \( v \): 1. Differentiate \( u \): \[ du = \frac{d}{dx} \ln(1 + \sin^2 x) \, dx = \frac{2 \sin x \cos x}{1 + \sin^2 x} \, dx = \frac{\sin(2x)}{1 + \sin^2 x} \, dx. \] 2. Integrate \( dv \): \[ v = \int \sec^2 x \, dx = \tan x. \] ### Step 2: Apply Integration by Parts Formula Now, we apply the integration by parts formula: \[ \int u \, dv = uv - \int v \, du. \] Substituting our values: \[ I = \ln(1 + \sin^2 x) \tan x - \int \tan x \cdot \frac{\sin(2x)}{1 + \sin^2 x} \, dx. \] ### Step 3: Simplify the Integral The integral we need to evaluate now is: \[ \int \tan x \cdot \frac{\sin(2x)}{1 + \sin^2 x} \, dx. \] Recall that \( \sin(2x) = 2 \sin x \cos x \), so we can rewrite the integral as: \[ \int \tan x \cdot \frac{2 \sin x \cos x}{1 + \sin^2 x} \, dx = 2 \int \frac{\sin^2 x}{1 + \sin^2 x} \, dx. \] ### Step 4: Split the Integral Now, we can split the integral: \[ \int \frac{\sin^2 x}{1 + \sin^2 x} \, dx = \int \left( 1 - \frac{1}{1 + \sin^2 x} \right) \, dx. \] This gives us: \[ \int dx - \int \frac{1}{1 + \sin^2 x} \, dx. \] ### Step 5: Evaluate Each Integral 1. The first integral is straightforward: \[ \int dx = x. \] 2. The second integral can be evaluated using the identity: \[ \int \frac{1}{1 + \sin^2 x} \, dx = \frac{1}{\sqrt{3}} \tan^{-1} \left( \frac{\sin x}{\sqrt{3}} \right) + C. \] ### Step 6: Combine Everything Now we can combine everything back into our expression for \( I \): \[ I = \ln(1 + \sin^2 x) \tan x - 2 \left( x - \frac{1}{\sqrt{3}} \tan^{-1} \left( \frac{\sin x}{\sqrt{3}} \right) \right) + C. \] Thus, the final result is: \[ I = \ln(1 + \sin^2 x) \tan x - 2x + \frac{2}{\sqrt{3}} \tan^{-1} \left( \frac{\sin x}{\sqrt{3}} \right) + C. \]

To evaluate the integral \[ I = \int \frac{\ln(1 + \sin^2 x)}{\cos^2 x} \, dx, \] we will use integration by parts. Let's denote: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(log_(e)x)^(2)dx

Evaluate int(log_(e)x)^(2)dx

int sin2x*e^(cos^(2)x)dx

Evaluate int(log_(e)(x+sqrt(x^(2)+1)))/(sqrt(x^(2)+1))dx.

Evaluate int(log_(e)(x+sqrt(x^(2)+1)))/(sqrt(x^(2)+1))dx.

Evaluate : int (1)/(" sin"^(2) x " cos"^(2) x ") ") " dx "

Evaluate int e^(2x) ((1+ sin 2x)/(1+cos 2x))dx

Evaluate: inte^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate: inte^(2x)\ ((1+sin2x)/(1+cos2x))\ dx

Evaluate: inte^(2x)((1+sin2x)/(1+cos2x))dx