Home
Class 12
MATHS
Evaluate : int(xlog(e)x)/((x^(2)-1)^(3//...

Evaluate : `int(xlog_(e)x)/((x^(2)-1)^(3//2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x \log x}{(x^2 - 1)^{3/2}} \, dx, \] we will use integration by parts. Let's denote: - \( u = \log x \) - \( dv = \frac{x}{(x^2 - 1)^{3/2}} \, dx \) ### Step 1: Differentiate \( u \) and integrate \( dv \) First, we differentiate \( u \): \[ du = \frac{1}{x} \, dx. \] Next, we need to integrate \( dv \): To integrate \( dv = \frac{x}{(x^2 - 1)^{3/2}} \, dx \), we can use a substitution. Let: \[ t = x^2 - 1 \implies dt = 2x \, dx \implies x \, dx = \frac{dt}{2}. \] Then, we rewrite the integral: \[ \int \frac{x}{(x^2 - 1)^{3/2}} \, dx = \int \frac{1}{t^{3/2}} \cdot \frac{dt}{2} = \frac{1}{2} \int t^{-3/2} \, dt. \] ### Step 2: Integrate \( t^{-3/2} \) The integral of \( t^{-3/2} \) is: \[ \int t^{-3/2} \, dt = -2 t^{-1/2} + C = -\frac{2}{\sqrt{t}} + C. \] Substituting back \( t = x^2 - 1 \): \[ \int \frac{x}{(x^2 - 1)^{3/2}} \, dx = -\frac{1}{\sqrt{x^2 - 1}} + C. \] ### Step 3: Apply integration by parts Now we can apply integration by parts: \[ I = u \cdot v - \int v \, du. \] Substituting \( u \) and \( v \): \[ I = \log x \left(-\frac{1}{\sqrt{x^2 - 1}}\right) - \int \left(-\frac{1}{\sqrt{x^2 - 1}}\right) \left(\frac{1}{x}\right) \, dx. \] This simplifies to: \[ I = -\frac{\log x}{\sqrt{x^2 - 1}} + \int \frac{1}{x \sqrt{x^2 - 1}} \, dx. \] ### Step 4: Evaluate the remaining integral The integral \[ \int \frac{1}{x \sqrt{x^2 - 1}} \, dx \] can be solved by the substitution \( x = \sec \theta \), where \( dx = \sec \theta \tan \theta \, d\theta \). Thus, we have: \[ \sqrt{x^2 - 1} = \sqrt{\sec^2 \theta - 1} = \tan \theta. \] So the integral becomes: \[ \int \frac{\sec \theta \tan \theta}{\sec \theta \tan \theta} \, d\theta = \int d\theta = \theta + C = \sec^{-1}(x) + C. \] ### Step 5: Combine results Putting everything together, we have: \[ I = -\frac{\log x}{\sqrt{x^2 - 1}} + \sec^{-1}(x) + C. \] Thus, the final answer is: \[ \int \frac{x \log x}{(x^2 - 1)^{3/2}} \, dx = -\frac{\log x}{\sqrt{x^2 - 1}} + \sec^{-1}(x) + C. \]

To evaluate the integral \[ I = \int \frac{x \log x}{(x^2 - 1)^{3/2}} \, dx, \] we will use integration by parts. Let's denote: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|48 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(xlog_ex)dx

Evaluate: int(x e^(x)dx)/((x+1)^(2))

Evaluate : int_0^1xlog(1+2x)dx

Evaluate : int_0^1xlog(1+2x)dx

Evaluate : int_0^1xlog(1+2x)dx

Evaluate: int2^(xlog_(2)^(3)) dx

Evaluate: int(e^x)/((1+e^x)^2)\ dx

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

Evaluate : int_1^2(x+3)/(x(x+2))dx

Evaluate: int(e^x)/((1+e^x)^2)dx