Home
Class 12
MATHS
int((2+secx)secx)/((1+2secx)^2)dx=...

`int((2+secx)secx)/((1+2secx)^2)dx=`

A

`(1)/("2 cosec x"+cotx)+C`

B

`"2 cosec x"+cotx+C`

C

`(1)/("2 cosec x"-cotx)+C`

D

`"2 cosec x"-cotx+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{(2 + \sec x) \sec x}{(1 + 2 \sec x)^2} \, dx, \] we will follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integral in terms of sine and cosine. Recall that \(\sec x = \frac{1}{\cos x}\), so we can rewrite the integral as: \[ \int \frac{(2 + \frac{1}{\cos x}) \cdot \frac{1}{\cos x}}{(1 + 2 \cdot \frac{1}{\cos x})^2} \, dx. \] This simplifies to: \[ \int \frac{(2 \cos x + 1)}{(1 + 2)^2} \, dx = \int \frac{(2 \cos x + 1)}{(2 + \cos x)^2} \, dx. \] ### Step 2: Simplify the expression Next, we can express \(1\) as \(\sin^2 x + \cos^2 x\): \[ \int \frac{(2 \cos x + \sin^2 x + \cos^2 x)}{(2 + \cos x)^2} \, dx. \] This gives us: \[ \int \frac{(2 \cos x + 1)}{(2 + \cos x)^2} \, dx. \] ### Step 3: Separate the integral Now we can separate the integral into two parts: \[ \int \frac{2 \cos x}{(2 + \cos x)^2} \, dx + \int \frac{1}{(2 + \cos x)^2} \, dx. \] ### Step 4: Use substitution For the first integral, we can use the substitution \(u = 2 + \cos x\), which gives \(du = -\sin x \, dx\). Therefore, we can rewrite the integral as: \[ -\int \frac{2}{u^2} \, du = -\frac{2}{u} + C = -\frac{2}{2 + \cos x} + C. \] For the second integral, we can use the same substitution: \[ \int \frac{1}{u^2} \, du = -\frac{1}{u} + C = -\frac{1}{2 + \cos x} + C. \] ### Step 5: Combine the results Now we combine the results of the two integrals: \[ -\frac{2}{2 + \cos x} - \frac{1}{2 + \cos x} + C = -\frac{3}{2 + \cos x} + C. \] ### Step 6: Convert back to secant Finally, we can convert back to secant terms if needed. Since \(\cos x = \frac{1}{\sec x}\), we can express the result as: \[ -\frac{3 \sec x}{3} + C = -\frac{3}{2 + \sec x} + C. \] Thus, the final answer is: \[ -\frac{3}{2 + \sec x} + C. \]

To solve the integral \[ \int \frac{(2 + \sec x) \sec x}{(1 + 2 \sec x)^2} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

sqrt(secx)

intdx/(1+secx)

int(dx)/(sinx+secx)

int(secx)/(1+c o s e c x)dx

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

The value of lim_(xrarr2pi)(1-(secx)^(secx))/(ln(secx)) is equal to

intsecx(secx+tanx)dx

Evaluate: intsqrt(("cosec"x-cotx)/("cosec"x+cotx).(secx)/sqrt(1+2secx) dx

intsqrt(secx+1)dx