Home
Class 12
MATHS
If intf(x)dx=g(x)+c and f^(-1)(x) is dif...

If `intf(x)dx=g(x)+c and f^(-1)(x)` is differentiable, then `intf^(-1)(x)dx` equal to

A

`g^(-1)(x)+C`

B

`xf^(-1)+C`

C

`xf^(-1)(x)-g(f^(-1)(x))+C`

D

`f^(-1)(x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integral of the inverse function \( f^{-1}(x) \) given that: \[ \int f(x) \, dx = g(x) + c \] where \( f^{-1}(x) \) is differentiable. ### Step-by-Step Solution: 1. **Set Up the Integral**: We start with the integral we want to evaluate: \[ \int f^{-1}(x) \, dx \] 2. **Use Integration by Parts**: We can apply integration by parts, which states: \[ \int u \, dv = uv - \int v \, du \] Here, we let: - \( u = f^{-1}(x) \) - \( dv = dx \) Thus, \( du = \frac{d}{dx} f^{-1}(x) \, dx \) and \( v = x \). 3. **Apply Integration by Parts**: Now substituting into the integration by parts formula: \[ \int f^{-1}(x) \, dx = f^{-1}(x) \cdot x - \int x \cdot \frac{d}{dx} f^{-1}(x) \, dx \] 4. **Change of Variables**: To simplify the integral, we can use a substitution. Let: \[ f^{-1}(x) = t \implies x = f(t) \] Then, differentiating both sides gives: \[ \frac{dx}{dt} = f'(t) \implies dx = f'(t) \, dt \] 5. **Substituting Back**: Substitute \( x = f(t) \) into the integral: \[ \int f^{-1}(x) \, dx = t \cdot f(t) - \int f(t) \cdot \frac{1}{f'(t)} \, dt \] 6. **Using the Given Information**: From the problem, we know: \[ \int f(t) \, dt = g(t) + c \] Therefore, we can replace the integral: \[ \int f(t) \cdot \frac{1}{f'(t)} \, dt = g(t) + c \] 7. **Final Expression**: Putting everything together, we have: \[ \int f^{-1}(x) \, dx = f^{-1}(x) \cdot x - (g(f^{-1}(x)) + c) \] Thus, the final result is: \[ \int f^{-1}(x) \, dx = x f^{-1}(x) - g(f^{-1}(x)) - c \]

To solve the problem, we need to find the integral of the inverse function \( f^{-1}(x) \) given that: \[ \int f(x) \, dx = g(x) + c \] where \( f^{-1}(x) \) is differentiable. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

Evaluate: If intf(x)dx=g(x),t h e nintf^(-1)(x)dx

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

If intf(x)dx=xcospix+C , then f((1)/(2))=

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

If intf(x)= Psi(x)dx+C then intx^(5)f(x^3)dx is equal to

Differentiate (x+1/x)^x

If f(x)a n dg(x) a re differentiate functions, then show that f(x)+-g(x) are also differentiable such that d/(dx){f(x)+-g(x)}=d/(dx){f(x)}+-d/(dx){g(x)}

If f(x) =(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)) ,k=1,2,3,……and g(x)=f^(1998)(x) then int_(1//e)^(1) g(x)dx is equal to

Differentiate wrt x : (e^(x)(x-1))/(x+1)