Home
Class 12
MATHS
int(e^(cotx))/(sin^(2)x)("2 ln cosec x"+...

`int(e^(cotx))/(sin^(2)x)("2 ln cosec x"+sin2x)dx`

A

`2e^(cotx)ln |sinx|+c`

B

`2e^(tanx)ln|sinx|+c`

C

`2e^(cotx)ln|cosx|+c`

D

`2e^(tanx)ln |cosx|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{e^{\cot x}}{\sin^2 x} \left(2 \ln \csc x + \sin 2x\right) dx, \] we will use substitution and properties of logarithms. ### Step 1: Substitution Let \( t = \cot x \). Then, the derivative of \( t \) is given by: \[ dt = -\csc^2 x \, dx \quad \Rightarrow \quad dx = -\frac{dt}{\csc^2 x} = -\frac{dt}{1 + t^2}. \] ### Step 2: Rewrite the integral Now, we can rewrite the integral in terms of \( t \): \[ I = \int \frac{e^t}{\sin^2 x} \left(2 \ln \csc x + \sin 2x\right) \left(-\frac{dt}{1 + t^2}\right). \] ### Step 3: Simplifying the terms We know that: \[ \sin^2 x = \frac{1}{\csc^2 x} = \frac{1}{1 + t^2}. \] Also, we can express \( \sin 2x \) as: \[ \sin 2x = 2 \sin x \cos x = 2 \cdot \frac{1}{\csc x} \cdot \frac{1}{\sec x} = \frac{2}{\csc x \cdot \sec x} = \frac{2}{\sqrt{1 + t^2}}. \] ### Step 4: Substitute back into the integral Now substituting these into the integral gives: \[ I = -\int e^t \left(2 \ln \csc x + \frac{2}{\sqrt{1 + t^2}}\right) dt. \] ### Step 5: Using properties of logarithms Using the property of logarithms, we can express \( \ln \csc x \) as: \[ \ln \csc x = \ln \frac{1}{\sin x} = -\ln \sin x. \] ### Step 6: Final integration Now we can integrate: \[ I = -\int e^t \left(2 (-\ln \sin x) + \frac{2}{\sqrt{1 + t^2}}\right) dt. \] This integral can be solved using integration techniques, leading to: \[ I = -2 e^{\cot x} \ln \sin x + C. \] ### Final Answer Thus, the final answer is: \[ I = -2 e^{\cot x} \ln \sin x + C. \]

To solve the integral \[ I = \int \frac{e^{\cot x}}{\sin^2 x} \left(2 \ln \csc x + \sin 2x\right) dx, \] we will use substitution and properties of logarithms. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int e^(x)(sin x-cos x)/(sin^(2)x)dx

int x sin^2(x/2) dx

int sin2x*e^(cos^(2)x)dx

int(1+sin2x)/(cos^2x)dx

int (sin2x) dx/(1+sin^4x)

int e^(x). " sin x( sin x+ 2 cos x) dx "

int(sin2x)/(cos2x)dx

The value of int(ln(cotx))/(sin2x)dx is equal to (where, C is the constant of integration)

Evaluate int cosec^(2)x ln (cos x + sqrt(cos 2x))dx .

I=int(sin2x-cos2x)^(2)dx