Home
Class 12
MATHS
int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f...

`int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C`, then f(x) is equal to

A

`sinx`

B

`cos x`

C

`tanx`

D

`cotx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{1 - 7 \cos^2 x}{\sin^7 x \cos^2 x} \, dx, \] we can start by breaking it down into two separate integrals: \[ I = \int \frac{1}{\sin^7 x \cos^2 x} \, dx - 7 \int \frac{\cos^2 x}{\sin^7 x \cos^2 x} \, dx. \] This simplifies to: \[ I = \int \frac{1}{\sin^7 x \cos^2 x} \, dx - 7 \int \frac{1}{\sin^7 x} \, dx. \] Let's denote the first integral as \( I_1 \) and the second integral as \( I_2 \): \[ I_1 = \int \frac{1}{\sin^7 x \cos^2 x} \, dx, \] \[ I_2 = \int \frac{1}{\sin^7 x} \, dx. \] ### Step 1: Solve \( I_1 \) For \( I_1 \), we can use integration by parts. Let: - \( u = \frac{1}{\sin^7 x} \) - \( dv = \sec^2 x \, dx \) (since \( \frac{1}{\cos^2 x} = \sec^2 x \)) Then we differentiate and integrate: - \( du = -7 \frac{\cos x}{\sin^8 x} \, dx \) - \( v = \tan x \) Using integration by parts: \[ I_1 = uv - \int v \, du, \] \[ I_1 = \frac{1}{\sin^7 x} \tan x - \int \tan x \left(-7 \frac{\cos x}{\sin^8 x}\right) \, dx. \] This simplifies to: \[ I_1 = \frac{\tan x}{\sin^7 x} + 7 \int \frac{\tan x \cos x}{\sin^8 x} \, dx. \] ### Step 2: Solve \( I_2 \) Now, for \( I_2 \): \[ I_2 = \int \frac{1}{\sin^7 x} \, dx. \] This integral can be solved using a known formula or further substitution, but for our purposes, we will keep it as is for now. ### Step 3: Combine Results Now we can combine the results: \[ I = I_1 - 7 I_2. \] Substituting back: \[ I = \left(\frac{\tan x}{\sin^7 x} + 7 \int \frac{\tan x \cos x}{\sin^8 x} \, dx\right) - 7 \int \frac{1}{\sin^7 x} \, dx. \] ### Step 4: Final Expression We are given that: \[ I = \frac{f(x)}{\sin^7 x} + C. \] From our expression, we can see that \( f(x) \) must equal the terms we have derived. Thus, we can conclude: \[ f(x) = \tan x. \] ### Final Answer Therefore, the value of \( f(x) \) is: \[ \boxed{\tan x}. \]

To solve the integral \[ I = \int \frac{1 - 7 \cos^2 x}{\sin^7 x \cos^2 x} \, dx, \] we can start by breaking it down into two separate integrals: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

Suppose int(1-7cos^2x)/(sin^7xcos^2x)dx=(g(x))/(sin^7x)+c where C is arbitrary constant of integration.then find value of g'(0)+g''(pi/4)

If int(dx)/(cos^(3)x-sin^(3)x)=Atan^(-1)(sinx+cosx)+Bln(f(x))+C , then A is equal to

If int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx=p sinx-q/(sinx)-rtan^(-1)(sinx)+C then p+2q+r is equql to:

if int(1-5sin^2x)/(cos^5xsin^2x)dx=f(x)/(cos^5x)+c then f(x)

If inte^(sinx).(xcos^(3)x-sinx)/(cos^(2)x)dx=e^(sinx)f(x)+C , such that f(0) =-1 then pi/3-f(pi/3) is equal to: