Home
Class 12
MATHS
If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2...

If `f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0` then the value of f(1) is

A

`e((pi)/(4)-(1)/(2))+1`

B

`e((pi)/(4)+(1)/(2))+1`

C

`e((pi)/(2)-(1)/(4))+1`

D

`e^(-1)((pi)/(4)-(1)/(2))+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function defined by the integral: \[ f(x) = \int e^x \left( \tan^{-1}(x) + \frac{2x}{(1+x^2)^2} \right) dx \] with the condition that \( f(0) = 0 \). We are tasked with finding \( f(1) \). ### Step-by-Step Solution: 1. **Rewrite the Integral:** We can separate the integral into two parts: \[ f(x) = \int e^x \tan^{-1}(x) \, dx + \int e^x \frac{2x}{(1+x^2)^2} \, dx \] 2. **Use Integration by Parts:** For the first integral, we can use integration by parts. Let: - \( u = \tan^{-1}(x) \) ⇒ \( du = \frac{1}{1+x^2} \, dx \) - \( dv = e^x \, dx \) ⇒ \( v = e^x \) Applying integration by parts: \[ \int e^x \tan^{-1}(x) \, dx = e^x \tan^{-1}(x) - \int e^x \frac{1}{1+x^2} \, dx \] 3. **Evaluate the Second Integral:** For the second integral: \[ \int e^x \frac{2x}{(1+x^2)^2} \, dx \] We can notice that: \[ \frac{d}{dx} \left( \frac{1}{1+x^2} \right) = -\frac{2x}{(1+x^2)^2} \] Thus, we can rewrite the integral as: \[ \int e^x \frac{2x}{(1+x^2)^2} \, dx = -\int e^x \frac{d}{dx} \left( \frac{1}{1+x^2} \right) \, dx \] Using integration by parts again, we can find: \[ -\int e^x \frac{d}{dx} \left( \frac{1}{1+x^2} \right) \, dx = -e^x \frac{1}{1+x^2} + \int e^x \frac{1}{1+x^2} \, dx \] 4. **Combine Results:** Combining all parts, we have: \[ f(x) = e^x \tan^{-1}(x) - \left( e^x \frac{1}{1+x^2} - \int e^x \frac{1}{1+x^2} \, dx \right) + C \] 5. **Substituting \( f(0) = 0 \):** Now we need to find the constant \( C \) using the condition \( f(0) = 0 \): \[ f(0) = e^0 \tan^{-1}(0) - \left( e^0 \frac{1}{1+0^2} - \int e^0 \frac{1}{1+0^2} \, dx \right) + C = 0 \] Simplifying: \[ 0 - (1 - 0) + C = 0 \implies C = 1 \] 6. **Finding \( f(1) \):** Now we can find \( f(1) \): \[ f(1) = e^1 \tan^{-1}(1) - \left( e^1 \frac{1}{1+1^2} - \int e^1 \frac{1}{1+1^2} \, dx \right) + 1 \] Since \( \tan^{-1}(1) = \frac{\pi}{4} \): \[ f(1) = e \cdot \frac{\pi}{4} - \left( e \cdot \frac{1}{2} - \frac{e}{2} \right) + 1 \] Simplifying gives: \[ f(1) = e \cdot \frac{\pi}{4} - \frac{e}{2} + 1 \] ### Final Answer: Thus, the value of \( f(1) \) is: \[ f(1) = e \cdot \frac{\pi}{4} - \frac{e}{2} + 1 \]

To solve the problem, we need to evaluate the function defined by the integral: \[ f(x) = \int e^x \left( \tan^{-1}(x) + \frac{2x}{(1+x^2)^2} \right) dx \] with the condition that \( f(0) = 0 \). We are tasked with finding \( f(1) \). ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx and f(0)=0, then the value of f(1) is :

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is

Let f(x)=int(x^2dx)/((1+x^2)(1+sqrt(x^2+1)))a n df(0)=0. Then value of f(1) will be

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

"If " f(x)=int(dx)/(x^(1//3)+2) " and "f(0)=12log_(e)2, " then the value of " f(-1) " is"-.

If f'(x)=(dx)/((1+x^(2))^(3//2)) and f(0)=0. then f(1) is equal to