Home
Class 12
MATHS
int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equa...

`int(e^(x)(x-1)(x-lnx))/(x^(2))dx` is equal to

A

`e^(x)((x-lnx)/(x))+c`

B

`e^(x)((x-lnx+1)/(x))+c`

C

`e^(x)((x-lnx)/(x^(2)))+c`

D

`e^(x)((x-lnx-1)/(x))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{e^x (x - 1)(x - \ln x)}{x^2} \, dx \), we can proceed step by step as follows: ### Step 1: Simplify the integrand We can rewrite the integrand: \[ I = \int \frac{e^x (x - 1)(x - \ln x)}{x^2} \, dx = \int e^x \left( \frac{x - 1}{x^2} \right) (x - \ln x) \, dx \] ### Step 2: Break down the expression Next, we can express \( x - \ln x \) in a more manageable form: \[ x - \ln x = \ln(e^x) - \ln x = \ln\left(\frac{e^x}{x}\right) \] Thus, we can rewrite the integral as: \[ I = \int e^x \left( \frac{x - 1}{x^2} \right) \ln\left(\frac{e^x}{x}\right) \, dx \] ### Step 3: Substitution Let \( t = \frac{e^x}{x} \). Then, we differentiate \( t \): \[ dt = \left(\frac{e^x}{x} \cdot (1 - \frac{1}{x})\right) \, dx = \frac{e^x (x - 1)}{x^2} \, dx \] Thus, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{x^2}{e^x (x - 1)} \, dt \] ### Step 4: Substitute back into the integral Now we can substitute \( t \) and \( dt \) back into the integral: \[ I = \int \ln(t) \, dt \] ### Step 5: Integrate The integral of \( \ln(t) \) is given by: \[ \int \ln(t) \, dt = t \ln(t) - t + C \] ### Step 6: Substitute back for \( t \) Now we substitute back \( t = \frac{e^x}{x} \): \[ I = \frac{e^x}{x} \ln\left(\frac{e^x}{x}\right) - \frac{e^x}{x} + C \] ### Step 7: Simplify the expression This can be simplified as: \[ I = \frac{e^x}{x} \left( x - \ln(x) \right) - \frac{e^x}{x} + C \] \[ I = \frac{e^x}{x} (x - 1 - \ln x) + C \] ### Final Result Thus, the final result of the integral is: \[ I = \frac{e^x}{x} (x - 1 - \ln x) + C \]

To solve the integral \( I = \int \frac{e^x (x - 1)(x - \ln x)}{x^2} \, dx \), we can proceed step by step as follows: ### Step 1: Simplify the integrand We can rewrite the integrand: \[ I = \int \frac{e^x (x - 1)(x - \ln x)}{x^2} \, dx = \int e^x \left( \frac{x - 1}{x^2} \right) (x - \ln x) \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

Read the following passages and answer the following questions (7-9) Consider the integrals of the form l=inte^(x)(f(x)+f'(x))dx By product rule considering e^(x)f(x) as first integral and e^(x)f'(x) as second one, we get l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c int((1)/(lnx)-(1)/((lnx)^(2)))dx is equal to

int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int(x^2e^(x))/((x+2)^(2))dx is equal to

The value of int((1+x))/(x(1+x e^(x))^(2))dx , is equal to

int((lnx-1)/((lnx)^(2)+1))^2dx is equal to

int(x e^x)/((1+x)^2)dx is equal to