Home
Class 12
MATHS
int(sin(101x).sin^(99)x)dx equals...

`int(sin(101x).sin^(99)x)dx` equals

A

`(sin(100x)(sinx)^(100))/(100)+C`

B

`(cos(100x)(sinx)^(100))/(100)+C`

C

`(cos(100x)(cosx)^(100))/(100)+C`

D

`(cos(100x)(cosx)^(100))/(100)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin(101x) \sin^{99}(x) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express \( \sin(101x) \) as \( \sin(100x + x) \). Using the sine addition formula, we have: \[ \sin(100x + x) = \sin(100x) \cos(x) + \cos(100x) \sin(x) \] Thus, we can rewrite the integral as: \[ \int \sin(101x) \sin^{99}(x) \, dx = \int (\sin(100x) \cos(x) + \cos(100x) \sin(x)) \sin^{99}(x) \, dx \] ### Step 2: Distribute the Integral Now we can distribute the integral: \[ = \int \sin(100x) \cos(x) \sin^{99}(x) \, dx + \int \cos(100x) \sin^{100}(x) \, dx \] ### Step 3: Simplify the Second Integral The second integral can be simplified: \[ \int \cos(100x) \sin^{100}(x) \, dx \] We can use integration by parts for this integral. Let: - \( u = \sin^{100}(x) \) - \( dv = \cos(100x) \, dx \) Then we differentiate and integrate: - \( du = 100 \sin^{99}(x) \cos(x) \, dx \) - \( v = \frac{1}{100} \sin(100x) \) ### Step 4: Apply Integration by Parts Now we apply the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Substituting in our values: \[ = \frac{1}{100} \sin^{100}(x) \sin(100x) - \int \frac{1}{100} \sin(100x) (100 \sin^{99}(x) \cos(x)) \, dx \] This simplifies to: \[ = \frac{1}{100} \sin^{100}(x) \sin(100x) - \int \sin(100x) \sin^{99}(x) \cos(x) \, dx \] ### Step 5: Combine the Integrals Now we can combine the integrals: \[ \int \sin(100x) \sin^{99}(x) \cos(x) \, dx + \int \sin(100x) \sin^{99}(x) \cos(x) \, dx = \frac{1}{100} \sin^{100}(x) \sin(100x) \] This gives us: \[ 2 \int \sin(100x) \sin^{99}(x) \cos(x) \, dx = \frac{1}{100} \sin^{100}(x) \sin(100x) \] Thus: \[ \int \sin(100x) \sin^{99}(x) \cos(x) \, dx = \frac{1}{200} \sin^{100}(x) \sin(100x) \] ### Step 6: Final Result Finally, we can write the result of the original integral: \[ \int \sin(101x) \sin^{99}(x) \, dx = \frac{1}{200} \sin^{100}(x) \sin(100x) + C \] where \( C \) is the constant of integration.

To solve the integral \( \int \sin(101x) \sin^{99}(x) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express \( \sin(101x) \) as \( \sin(100x + x) \). Using the sine addition formula, we have: \[ \sin(100x + x) = \sin(100x) \cos(x) + \cos(100x) \sin(x) \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED (Single Correct Answer Type)|1 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

int(2sinx)/(3+sin2x)dx is equal to

int(sin2x)/(2cos^(2)x+3sin^(2)x)dx equals

int(sin2x)/(sin5xsin3x)dx is equal to

int(1)/(1+3 sin ^(2)x)dx is equal to

int (dx)/(sin(x-a)sin(x-b)

int_0^(2pi)sin^(100)xcos^(99)x dx

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

int2sin(x)dx is equal to:

int3sin(x)dx is equal to: