Home
Class 11
MATHS
Sin^(-1)(3/5)+Cos^(-1)(5/sqrt34)=...

`Sin^(-1)(3/5)+Cos^(-1)(5/sqrt34)=`

Text Solution

Verified by Experts

The correct Answer is:
`27/11`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE I|31 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE 7.1 (VERY SHORT ANSWER QUESTIONS)|32 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|7 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos

Similar Questions

Explore conceptually related problems

Sin^(-1)(3/5)-Cos^(-1)(12/13)=

sin^(-1)(3/5)+sin^(-1)(5/13)=

Sin^(-1)((-sqrt2)/2)+Cos^(-1)(-1/2)-Tan^(-1)(-sqrt3)-Cot^(-1)(1/sqrt3)=

The equation Sin^(-1)x-Cos^(-1)x=Cos^(-1)(sqrt3//2) has

If Sin^(-1)(3//5)+Sin^(-1)(5//13)=Sin^(-1)x , then x =

cos[sin^(-1)(-4//5)-cos^(-1)(4//5)]=

tan[1/2Cos^(-1)(sqrt5/3)]=

sin^(-1)(-3/4)=-cos^(-1)sqrt(1-9/16)=-cos^(-1)((sqrt(7))/4)

Find the value of sin(Cos^(-1)3/5+Cos^(-1)12/13)

cos(sin^(-1)(5/13))=