Home
Class 11
MATHS
cos("Sin"^(-1)3/5+"Sin"^(-1)5/13)=...

`cos("Sin"^(-1)3/5+"Sin"^(-1)5/13)=`

Text Solution

Verified by Experts

The correct Answer is:
`33/65`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE I|31 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE 7.1 (VERY SHORT ANSWER QUESTIONS)|32 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|7 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIOS)|5 Videos

Similar Questions

Explore conceptually related problems

Sin^(-1)(4/5)-Sin^(-1)(5/13)=

Sin^(-1)(3/5)+Sin^(-1)(8/17)=

Sin^(-1)(3/5)-Cos^(-1)(12/13)=

If Sin^(-1)(3//5)+Sin^(-1)(5//13)=Sin^(-1)x , then x =

Sin^(-1)(3/5)+Cos^(-1)(5/sqrt34)=

Show that "sin"^(-1)3/5-"sin"^(-1)8/17="cos"^(-1)84/85

Prove that "Sin"^(-1)3/5+"Cos"^(-1)15/17="Sin"^(-1)77/85

Prove That : "cos"^(-1)12/13+"sin"^(-1)3/5="sin"^(-1)56/65

cos(sin^(-1)(5/13))=