Home
Class 11
MATHS
Prove that (Cosalpha-Cosbeta)^(2)+(Sinal...

Prove that `(Cosalpha-Cosbeta)^(2)+(Sinalpha-Sinbeta)^(2)=4Sin^(2)((alpha-beta)/2)`

Promotional Banner

Topper's Solved these Questions

  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise EXERCISE-1 |35 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise EXERCISE-II|52 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise EXERCISE 3.1 ( LONG ANSWER QUESTION )|9 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - II) (LEVEL - II) (Linked Comprehension Type Questions)|5 Videos
  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|62 Videos

Similar Questions

Explore conceptually related problems

For alpha , beta in R , prove that (cos alpha + cos beta )^(2)+ (sin alpha + sin beta )^(2)=4cos^(2). ((alpha-beta))/(2)

If cos alpha =(3)/(5) and cos beta =(5)/(13) and alpha, beta are acute angles, then prove that (a) sin ^(2)((alpha-beta)/(2))=(1)/(65) and (b) cos ^(2)((alpha+beta)/(2))=(16)/(65)

Prove that cos alpha+cos beta+cos gamma+cos (alpha+beta+gamma) =4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

If 3 sin alpha=5sin beta then (tan((alpha+beta)/2))/(tan((alpha-beta)/2))=

Prove that sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta) is independent of alpha .

Prove that cos^(2)(alpha-beta)+cos^(2)beta-2cos(alpha-beta)cosalphacosbeta is independent of beta .

If cosalpha+cosbeta=0=sinalpha+sinbeta" then "cos2alpha+cos2beta

Prove that sin^(2)alpha + cos^(2) (alpha + beta) + 2 sin alpha sin beta cos (alpha + beta) is independent of alpha .

[(cos alpha-cos beta)+i(sin alpha-sinbeta)]^n+[(cos alpha-cos beta)-i(sin alpha-sin beta)]^n=