Home
Class 11
MATHS
If alpha, beta are solutions of a cos th...

If `alpha, beta` are solutions of `a cos theta + b sin theta = c` where a, b, `c in R` and `a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta` then prove that
`cos alpha + cos beta = (2ac)/(a^(2) + b^(2))`

Promotional Banner

Topper's Solved these Questions

  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise EXERCISE-1 |35 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise EXERCISE-II|52 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise EXERCISE 3.1 ( LONG ANSWER QUESTION )|9 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - II) (LEVEL - II) (Linked Comprehension Type Questions)|5 Videos
  • MULTIPLE PRODUCT OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|62 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that cos alpha cos beta = (c^(2) - b^(2))/(a^(2) + b^(2))

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that sin alpha sin beta = (c^(2)-a^(2))/(a^(2) + b^(2))

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that sin alpha + sin beta = (2bc)/(a^(2) + b^(2))

If alpha, beta are the solutions of a cos 2theta + b sin 2theta = c , then tan alpha tan beta=

If cos alpha + cos beta =0 = sin alpha + sin beta " then " cos (alpha - beta )=

If alpha, beta are solutions of a cos x + b sin x = c then cos alpha + cos beta=