Home
Class 12
MATHS
Evaluate : int(0)^((pi)/2)) (sqrt(cot x...

Evaluate : ` int_(0)^((pi)/2)) (sqrt(cot x))/(sqrt(cot x)+ sqrt(tan x)) dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} \, dx, \] we can use the property of definite integrals which states that \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] Here, our upper limit is \(\frac{\pi}{2}\), so we will replace \(x\) with \(\frac{\pi}{2} - x\). ### Step 1: Substitute \(x\) with \(\frac{\pi}{2} - x\) \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cot\left(\frac{\pi}{2} - x\right)}}{\sqrt{\cot\left(\frac{\pi}{2} - x\right)} + \sqrt{\tan\left(\frac{\pi}{2} - x\right)}} \, dx. \] ### Step 2: Simplify using trigonometric identities Using the identities \(\cot\left(\frac{\pi}{2} - x\right) = \tan x\) and \(\tan\left(\frac{\pi}{2} - x\right) = \cot x\), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} \, dx. \] ### Step 3: Combine the two integrals Now we have two expressions for \(I\): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} \, dx, \] \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} \, dx. \] Adding these two equations: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} + \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} \right) \, dx. \] ### Step 4: Simplify the expression inside the integral Notice that: \[ \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} + \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} = 1. \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 5: Evaluate the integral The integral of 1 from 0 to \(\frac{\pi}{2}\) is simply: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}. \] ### Step 6: Solve for \(I\) So we have: \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4}. \] ### Final Answer Thus, the value of the integral is \[ \boxed{\frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and In sub-parts (iii) to (v) , answer the questions as instructed )|5 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^((pi)/(2)) log (cot x)dx .

Evaluate int _(0)^(pi//2) sqrt(1+ cos x dx)

Evaluate : int_(0)^( pi//2) (sqrt( sec x) )/( sqrt(sec x ) + sqrt( cosec x) ) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

Evaluate: int_0^(pi//2)(sqrt(sin x))/(sqrt(sin x)+sqrt(cos x))dx

Evaluate: int_(1)^(2) (sqrt(x))/(sqrt(3-x) + sqrt(x)) dx .

Evaluate : int_(0)^(a)x^(5//2)sqrt(a-x)dx

Evaluate : int_(0)^(pi)sqrt(1+sin2x)dx .

ICSE-MODEL TEST PAPER - 8-Section - A
  1. Using differential find the approximate value of tan 46^(@) , If it ...

    Text Solution

    |

  2. A ladder 13 m long is leaning against a wall. The bottom of the ladder...

    Text Solution

    |

  3. A function f :R to R is defined by f(x) = 2x^(3) + 3 . Show that f i...

    Text Solution

    |

  4. If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 ...

    Text Solution

    |

  5. Evaluate : int(0)^((pi)/2)) (sqrt(cot x))/(sqrt(cot x)+ sqrt(tan x)) ...

    Text Solution

    |

  6. Evaluate intsec ^(2) x * cosec^(2) x dx

    Text Solution

    |

  7. Solve the differential equation : (1 - x^(2)) (dy)/(dx) - xy = x

    Text Solution

    |

  8. Prove that : sin^(-1) ""(x)/(sqrt(1 + x^(2))) + cos ^(-1) "" (x + 1)/(...

    Text Solution

    |

  9. Evaluate : int (-2)^(3) |1 - x^(2) | dx

    Text Solution

    |

  10. If y = e^(x) (sin x + cos x ), prove that (d^(2) y)/( dx^(2)) - 2 (...

    Text Solution

    |

  11. Is the function f (x) = ( 3 x + 4 tan x)/( x) continuous at x = 0 ? ...

    Text Solution

    |

  12. A die is thrown twice and the sum of number appearing is observed to b...

    Text Solution

    |

  13. A coin is tossed until a head appears or tail appears 4 times in succe...

    Text Solution

    |

  14. Show that x = 2 is a root of the equation|{:(x, -6, -1),(2,- 3x,x-3),(...

    Text Solution

    |

  15. Solve the following system of equations by matrix inversion method. ...

    Text Solution

    |

  16. Evaluate : int (sqrt(1 + sin x))/( 1 + cos x) e^(-(x)/(2))dx

    Text Solution

    |

  17. Evaluate : int ( sqrt( tan x) - sqrt( cot x)) dx

    Text Solution

    |

  18. A window is in the form of a rectangle, together with a semi-circle on...

    Text Solution

    |

  19. Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin ...

    Text Solution

    |