Home
Class 12
MATHS
Evaluate : int (-2)^(3) |1 - x^(2) | dx...

Evaluate : `int _(-2)^(3) |1 - x^(2) | dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{-2}^{3} |1 - x^2| \, dx \), we will first determine where the expression inside the absolute value, \( 1 - x^2 \), is positive or negative. This will help us to rewrite the integral without the absolute value. ### Step 1: Find the points where \( 1 - x^2 = 0 \) Set the expression inside the absolute value to zero: \[ 1 - x^2 = 0 \implies x^2 = 1 \implies x = \pm 1 \] Thus, the critical points are \( x = -1 \) and \( x = 1 \). ### Step 2: Determine the sign of \( 1 - x^2 \) in the intervals We will check the sign of \( 1 - x^2 \) in the intervals \( (-\infty, -1) \), \( (-1, 1) \), and \( (1, \infty) \): - For \( x < -1 \) (e.g., \( x = -2 \)): \[ 1 - (-2)^2 = 1 - 4 = -3 \quad (\text{negative}) \] - For \( -1 < x < 1 \) (e.g., \( x = 0 \)): \[ 1 - 0^2 = 1 - 0 = 1 \quad (\text{positive}) \] - For \( x > 1 \) (e.g., \( x = 2 \)): \[ 1 - 2^2 = 1 - 4 = -3 \quad (\text{negative}) \] ### Step 3: Rewrite the integral based on the sign of \( 1 - x^2 \) Now we can rewrite the integral as follows: \[ \int_{-2}^{3} |1 - x^2| \, dx = \int_{-2}^{-1} -(1 - x^2) \, dx + \int_{-1}^{1} (1 - x^2) \, dx + \int_{1}^{3} -(1 - x^2) \, dx \] ### Step 4: Simplify the integrals Now we can simplify each integral: 1. For \( \int_{-2}^{-1} -(1 - x^2) \, dx \): \[ = \int_{-2}^{-1} (x^2 - 1) \, dx \] 2. For \( \int_{-1}^{1} (1 - x^2) \, dx \): \[ = \int_{-1}^{1} (1 - x^2) \, dx \] 3. For \( \int_{1}^{3} -(1 - x^2) \, dx \): \[ = \int_{1}^{3} (x^2 - 1) \, dx \] ### Step 5: Evaluate each integral 1. Evaluate \( \int_{-2}^{-1} (x^2 - 1) \, dx \): \[ = \left[ \frac{x^3}{3} - x \right]_{-2}^{-1} = \left( \frac{(-1)^3}{3} - (-1) \right) - \left( \frac{(-2)^3}{3} - (-2) \right) \] \[ = \left( -\frac{1}{3} + 1 \right) - \left( -\frac{8}{3} + 2 \right) = \left( \frac{2}{3} \right) - \left( -\frac{8}{3} + \frac{6}{3} \right) = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \] 2. Evaluate \( \int_{-1}^{1} (1 - x^2) \, dx \): \[ = \left[ x - \frac{x^3}{3} \right]_{-1}^{1} = \left( 1 - \frac{1}{3} \right) - \left( -1 + \frac{1}{3} \right) = \left( \frac{2}{3} \right) - \left( -\frac{2}{3} \right) = \frac{4}{3} \] 3. Evaluate \( \int_{1}^{3} (x^2 - 1) \, dx \): \[ = \left[ \frac{x^3}{3} - x \right]_{1}^{3} = \left( \frac{27}{3} - 3 \right) - \left( \frac{1}{3} - 1 \right) = (9 - 3) - \left( \frac{1}{3} - 1 \right) = 6 - \left( -\frac{2}{3} \right) = 6 + \frac{2}{3} = \frac{18}{3} + \frac{2}{3} = \frac{20}{3} \] ### Step 6: Combine the results Now combine all the results: \[ \int_{-2}^{3} |1 - x^2| \, dx = \frac{4}{3} + \frac{4}{3} + \frac{20}{3} = \frac{28}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{-2}^{3} |1 - x^2| \, dx = \frac{28}{3} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - B (In sub-parts (i) and (ii) choose the correct option and In sub-parts (iii) to (v) , answer the questions as instructed )|5 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - B|5 Videos
  • MODEL TEST PAPER - 8

    ICSE|Exercise Section - C |6 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos
  • MODEL TEST PAPER -1

    ICSE|Exercise Secton - C|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int _(1)^(3) x^2 dx

Evaluate : int_(-1)^2|x^3-x|\ dx

Evaluate : int_(-1)^2|x^3-x|\ dx

Evaluate : int(3x^2+1)dx

Evaluate int_(-2)^(2) (x^(3)+1)dx

Evaluate: int(2x)/(x^3-1)\ dx

Evaluate: int_2^3 1/x\ dx

Evaluate: int_2^3 1/x\ dx

Evaluate: int(x^2)/(1+x^3)\ dx

Evaluate : int_2^3x/(x^2+1)dx

ICSE-MODEL TEST PAPER - 8-Section - A
  1. Using differential find the approximate value of tan 46^(@) , If it ...

    Text Solution

    |

  2. A ladder 13 m long is leaning against a wall. The bottom of the ladder...

    Text Solution

    |

  3. A function f :R to R is defined by f(x) = 2x^(3) + 3 . Show that f i...

    Text Solution

    |

  4. If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 ...

    Text Solution

    |

  5. Evaluate : int(0)^((pi)/2)) (sqrt(cot x))/(sqrt(cot x)+ sqrt(tan x)) ...

    Text Solution

    |

  6. Evaluate intsec ^(2) x * cosec^(2) x dx

    Text Solution

    |

  7. Solve the differential equation : (1 - x^(2)) (dy)/(dx) - xy = x

    Text Solution

    |

  8. Prove that : sin^(-1) ""(x)/(sqrt(1 + x^(2))) + cos ^(-1) "" (x + 1)/(...

    Text Solution

    |

  9. Evaluate : int (-2)^(3) |1 - x^(2) | dx

    Text Solution

    |

  10. If y = e^(x) (sin x + cos x ), prove that (d^(2) y)/( dx^(2)) - 2 (...

    Text Solution

    |

  11. Is the function f (x) = ( 3 x + 4 tan x)/( x) continuous at x = 0 ? ...

    Text Solution

    |

  12. A die is thrown twice and the sum of number appearing is observed to b...

    Text Solution

    |

  13. A coin is tossed until a head appears or tail appears 4 times in succe...

    Text Solution

    |

  14. Show that x = 2 is a root of the equation|{:(x, -6, -1),(2,- 3x,x-3),(...

    Text Solution

    |

  15. Solve the following system of equations by matrix inversion method. ...

    Text Solution

    |

  16. Evaluate : int (sqrt(1 + sin x))/( 1 + cos x) e^(-(x)/(2))dx

    Text Solution

    |

  17. Evaluate : int ( sqrt( tan x) - sqrt( cot x)) dx

    Text Solution

    |

  18. A window is in the form of a rectangle, together with a semi-circle on...

    Text Solution

    |

  19. Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin ...

    Text Solution

    |