Home
Class 12
MATHS
If 0 lt theta lt pi/2, x= underset(n=0)o...

If `0 lt theta lt pi/2, x= underset(n=0)overset(oo)sum cos^(2n) theta, y= underset(n=0)overset(oo) sumsin^(2n) theta` and `z=underset(n=0)overset(oo)sum cos^(2n) theta* Sin^(2n) theta`, then show `xyz=xy+z`.

A

`xyz=xz+y`

B

`xyz=xy+z`

C

`xyz=x+y+z`

D

`xyz=yz+x`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`:. 0ltphilt(pi)/(2)`
`:.0sinphi lt1` and `0ltcosphilt1`
`:.x=sum_(n=0)^(oo)cos^(2n) phi=1+cos^(2)phi+cos^(4)phi+"....."+oo`
`=(1)/(1-cos^(2)phi)=(1)/(sin^(2)phi)`
or `sin^(2)phi=(1)/(x)" " "…..(i)"`
and `y=sum_(n=0)^(oo)sin^(2n) phi=1+sin^(2)phi+sin^(4)phi+"....."+oo`
`=(1)/(1-sin^(2)phi)=(1)/(cos^(2)phi)`
or `cos^(2)phi=(1)/(y)" " ".....(ii)"`
From Eqs. (i) and (ii),
`sin^(2)phi+cos^(2)phi=(1)/(x)+(1)/(y)`
`1=(1)/(x)+(1)/(y)`
`:.xy=x+y" " "..........(iii)"`
and `z=sum_(n=0)^(oo)cos^(2n) phisin^(2)phi`
`=1+cos^(2)phisin^(2)phi+cos^(4)phisin^(4)phi+"......."`
`(1)/(1-sin^(2)phicos^(2)phi)=(1)/(1-(1)/(xy))[" from Eqs. (i)and (ii) "]`
`implies z=(xy)/(xy-1)`
`implies xyz=+xy`
and `xyz=z+x+y" " ["from Eq.(iii) "]`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|24 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If 0 lt theta lt pi/2, x= sum_(n=0)^(oo) cos^(2n) theta, y= sum_(n=0)^(oo) sin^(2n) theta and z=sum_(n=0)^(oo) cos^(2n) theta* Sin^(2n) theta , then show xyz=xy+z .

Find the underset(k=1)overset(oo)sumunderset(n=1)overset(oo)sumk/(2^(n+k)) .

The value of cot (underset(n=1)overset(23)sum cot^(-1) (1 + underset(k=1)overset(n)sum 2k)) is

If x = underset(n-0)overset(oo)sum a^(n), y= underset(n =0)overset(oo)sum b^(n), z = underset(n =0)overset(oo)sum C^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1 , then x,y,z are in

underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n) is equal to

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

"For "0ltthetalt(pi)/(2) , if x=sum_(n=0)^(oo)cos^(2n)theta,y=sum_(n=0)^(oo)sin^(2n)phi,z=sum_(n=0)^(oo)cos^(2n)thetasin^(2n)phi , then

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

If underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007! , then value of n is