Home
Class 12
MATHS
Let E=1/(1^2)+1/(2^2)+1/(3^2)+ Then, E<3...

Let `E=1/(1^2)+1/(2^2)+1/(3^2)+` Then, `E<3` b. `E >3//2` c. `E >2` d. `E<2`

A

`Elt3`

B

`Egt(3)/(2)`

C

`Elt2`

D

`Egt2`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`E=(1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+"......"`
`Elt1+(1)/((1)(2))+(1)/((2)(3))+"......"`
`Elt1+(1-(1)/(2))+((1)/(2)-(1)/(3))+"......"`
`Elt2 " " "…….(i)"`
`Egt1+(1)/((2)(3))+(1)/((1)(3))+"......"`
`Egt1+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+"......"`
`Egt1+(1)/(2),Egt(3)/(2)`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|24 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Let E=1/(1^2)+1/(2^2)+1/(3^2)+ Then, a. E<3 b. E >3//2 c. E >2 d. E<2

The value of int_1^e((x/e)^(2x)+(e/x)^x)log_ex dx is equal to (A) e-1/(2e^2)-1/2 (B) e-1/(2e^2)+1/2 (C) e^3-1/(2e^2)-1/2 (D) none of these

The sum of the series ""(1^2)/(2!)+(2^2)/(3!)+(3^2)/(4!)+"i s" e+1 b. e-1 c. 2e+1 d. 2e-1

The value of lim_(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2 c. e^(-2) d. 1

Let a=int_0^(log2) (2e^(3x)+e^(2x)-1)/(e^(3x)+e^(2x)-e^x+1)dx , then 4e^a =

The sum of the series 1/(2!)-1/(3!)+1/(4!)-... upto infinity is (1) e^(-2) (2) e^(-1) (3) e^(-1//2) (4) e^(1//2)

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=

Choose the correct answer intx^2e^(x^3)dx equals(A) 1/3e^(x^3) +C (B) 1/3e^(x^2)+C (C) 1/2e^(x^3)+C (D) 1/2e^(x^2)+C

Let E=(1,2,3,4) and F-(1,2) . Then the number of onto functions from E to F is:

(inte^x^4 (x+x^3+2x^5) e^x^2 dx) i se q u a lto 1/2x e^x^2e^x^4+c (b) 1/2x^2e^x^4+c 1/2e^x^2e^x^4+c (d) 1/2x^2e^x^2e^x^4+c