Home
Class 12
MATHS
Let a= lim (x rarr 1) (x/(lnx)-1/(xln x)...

Let `a= lim _(x rarr 1) (x/(lnx)-1/(xln x)), b = lim _(x rarr 0) ((x^(3)-16x)/(4x+x^(2))),`
`c= lim _(x rarr 1) ((ln(1+sinx))/x) & `
`d = lim _(x rarr -1) ((x+1)^(3))/([sin (x+1) - (x+1)])`
Then `[[a,b],[c,d]]` is

A

idempotent

B

involutory

C

non-singular

D

nilpotent

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the limits \( a \), \( b \), \( c \), and \( d \) step by step. ### Step 1: Calculate \( a = \lim_{x \to 1} \left( \frac{x}{\ln x} - \frac{1}{x \ln x} \right) \) 1. **Combine the fractions**: \[ a = \lim_{x \to 1} \left( \frac{x^2 - 1}{x \ln x} \right) \] Here, we take the common denominator \( x \ln x \). 2. **Evaluate the limit**: When \( x \to 1 \), both the numerator and denominator approach 0, resulting in the indeterminate form \( \frac{0}{0} \). We apply L'Hôpital's Rule: \[ a = \lim_{x \to 1} \frac{2x}{\ln x + 1} \] 3. **Substituting \( x = 1 \)**: \[ a = \frac{2 \cdot 1}{\ln 1 + 1} = \frac{2}{0 + 1} = 2 \] ### Step 2: Calculate \( b = \lim_{x \to 0} \frac{x^3 - 16x}{4x + x^2} \) 1. **Simplify the expression**: \[ b = \lim_{x \to 0} \frac{x(x^2 - 16)}{x(4 + x)} = \lim_{x \to 0} \frac{x^2 - 16}{4 + x} \] 2. **Evaluate the limit**: Again, substituting \( x = 0 \) gives \( \frac{-16}{4} = -4 \). ### Step 3: Calculate \( c = \lim_{x \to 1} \frac{\ln(1 + \sin x)}{x} \) 1. **Substituting \( x = 1 \)**: \[ c = \frac{\ln(1 + \sin 1)}{1} = \ln(1 + \sin 1) \] ### Step 4: Calculate \( d = \lim_{x \to -1} \frac{(x + 1)^3}{\sin(x + 1) - (x + 1)} \) 1. **Evaluate the limit**: This limit is also of the form \( \frac{0}{0} \). We apply L'Hôpital's Rule: \[ d = \lim_{x \to -1} \frac{3(x + 1)^2}{\cos(x + 1) - 1} \] 2. **Substituting \( x = -1 \)** gives \( \frac{0}{0} \) again, so we differentiate again: \[ d = \lim_{x \to -1} \frac{6(x + 1)}{-\sin(x + 1)} = \lim_{x \to -1} \frac{6(0)}{-\sin(0)} = \frac{6}{0} = -6 \] ### Final Matrix Now we can substitute the values of \( a \), \( b \), \( c \), and \( d \) into the matrix: \[ \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ \ln(1 + \sin 1) & -6 \end{bmatrix} \]

To solve the given problem, we need to evaluate the limits \( a \), \( b \), \( c \), and \( d \) step by step. ### Step 1: Calculate \( a = \lim_{x \to 1} \left( \frac{x}{\ln x} - \frac{1}{x \ln x} \right) \) 1. **Combine the fractions**: \[ a = \lim_{x \to 1} \left( \frac{x^2 - 1}{x \ln x} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

3. lim_(x rarr0)(sin x sin^(-1)x)/(x^(2))

lim_(x rarr 0)((3^(x)-1)/(sqrt(1+x)-1))

lim_(x rarr oo)(log(1+x))/(x)

lim_(x rarr0)(1/x)^(1-cos x)

1. lim_(x rarr0)(sin^(-1)x-sin x)/(x^(3))

lim_(x rarr0)(1+2x)^(5/x)

lim_(x rarr 0)(sqrt(1-x)-1)/(x)=-(1)/(2)

lim_(x rarr oo)((log x)/(x))^(1/x)

lim_(x rarr0)sqrt(x)=

lim_(x rarr0)(2x^2-3x)/x

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Single Option Correct Type Questions)
  1. Let A= [[a,b,c],[p,q,r],[x,y,z]] and suppose then det (A) = 2, then d...

    Text Solution

    |

  2. If A is any square matrix such that A= [ ( 2, 3) , (5,8)] then find A+...

    Text Solution

    |

  3. Let a= lim (x rarr 1) (x/(lnx)-1/(xln x)), b = lim (x rarr 0) ((x^(3)-...

    Text Solution

    |

  4. Let A= [[1,4],[3,2]] If theta is the angle between the two non- zero ...

    Text Solution

    |

  5. If a square matrix A is involutory, then A^(2n+1) is equal to:

    Text Solution

    |

  6. If A=[[cos theta,sin theta],[-sin theta,cos theta]], then lim (n rarr...

    Text Solution

    |

  7. The rank of the matrix [[-1,2,5],[2,-4,a-4],[1,-2,a+1]] is (where a = ...

    Text Solution

    |

  8. A is an involuntary matrix given by A=[(0,1,-1),(4,-3,4),(3,-3,4)], th...

    Text Solution

    |

  9. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  10. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  11. If matrix A=[a(ij)](3xx), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0 ...

    Text Solution

    |

  12. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  13. If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-is...

    Text Solution

    |

  14. The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s...

    Text Solution

    |

  15. if A and B are squares matrices such that A^(2006)=O and A B=A+B , the...

    Text Solution

    |

  16. If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(p...

    Text Solution

    |

  17. There are two possible values of A in the solution of the matrix equ...

    Text Solution

    |

  18. If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...

    Text Solution

    |

  19. In a square matrix A of order 3 the elements a(ij) 's are the sum of...

    Text Solution

    |

  20. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |