Home
Class 12
MATHS
If A=[[cos theta,sin theta],[-sin theta,...

If A=`[[cos theta,sin theta],[-sin theta,cos theta]], ` then `lim _(n rarr infty )A^(n)/n ` is (where `theta in R`)

A

a zero matrix

B

an identity matrix

C

`[[0,1],[-1,0]]`

D

`[[0,1],[0,-1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of the matrix \( A^n/n \) as \( n \) approaches infinity, where \( A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \). ### Step-by-Step Solution: 1. **Understanding the Matrix \( A \)**: The matrix \( A \) is a rotation matrix. It represents a rotation by an angle \( \theta \) in the counter-clockwise direction. 2. **Finding \( A^2 \)**: To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \] Performing the multiplication: \[ A^2 = \begin{bmatrix} \cos^2 \theta - \sin^2 \theta & 2 \sin \theta \cos \theta \\ -2 \sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ -\sin(2\theta) & \cos(2\theta) \end{bmatrix} \] 3. **Finding \( A^n \)**: By induction or using the properties of rotation matrices, we can derive that: \[ A^n = \begin{bmatrix} \cos(n\theta) & \sin(n\theta) \\ -\sin(n\theta) & \cos(n\theta) \end{bmatrix} \] 4. **Calculating \( \frac{A^n}{n} \)**: Now, we need to divide each element of \( A^n \) by \( n \): \[ \frac{A^n}{n} = \begin{bmatrix} \frac{\cos(n\theta)}{n} & \frac{\sin(n\theta)}{n} \\ -\frac{\sin(n\theta)}{n} & \frac{\cos(n\theta)}{n} \end{bmatrix} \] 5. **Taking the Limit as \( n \to \infty \)**: We take the limit of each element in the matrix: \[ \lim_{n \to \infty} \frac{A^n}{n} = \begin{bmatrix} \lim_{n \to \infty} \frac{\cos(n\theta)}{n} & \lim_{n \to \infty} \frac{\sin(n\theta)}{n} \\ \lim_{n \to \infty} -\frac{\sin(n\theta)}{n} & \lim_{n \to \infty} \frac{\cos(n\theta)}{n} \end{bmatrix} \] Since \( \cos(n\theta) \) and \( \sin(n\theta) \) are bounded between -1 and 1, we have: \[ \lim_{n \to \infty} \frac{\cos(n\theta)}{n} = 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{\sin(n\theta)}{n} = 0 \] Thus, the limit of the matrix becomes: \[ \lim_{n \to \infty} \frac{A^n}{n} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \] 6. **Conclusion**: Therefore, the final answer is: \[ \lim_{n \to \infty} \frac{A^n}{n} = \mathbf{0} \]

To solve the problem, we need to find the limit of the matrix \( A^n/n \) as \( n \) approaches infinity, where \( A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \). ### Step-by-Step Solution: 1. **Understanding the Matrix \( A \)**: The matrix \( A \) is a rotation matrix. It represents a rotation by an angle \( \theta \) in the counter-clockwise direction. 2. **Finding \( A^2 \)**: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(alpha) E(beta)=

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If f (theta) = |sin theta| + |cos theta|, theta in R , then

If A = [{:("cos" theta, -"sin"theta),("sin"theta, "cos"theta):}] , then the matrix A^(-50) " when " theta = (pi)/(12) , is equal to

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

Prove the orthogonal matrices of order two are of the form [(cos theta,-sin theta),(sin theta,cos theta)] or [(cos theta,sin theta),(sin theta,-cos theta)]

if A=[{:(costheta,sin theta ),(-sin theta,costheta):}] , then show that : A^(2)=[{:(cos2theta,sin2theta),(-sin2theta,cos2theta):}]

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

(4) A=[[cos(theta),sin(theta)],[-sin(theta),cos(theta)]] ; prove, A^n=[[cos(ntheta),sin(ntheta)],[sin(ntheta),cos(ntheta)]]

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Single Option Correct Type Questions)
  1. Let A= [[1,4],[3,2]] If theta is the angle between the two non- zero ...

    Text Solution

    |

  2. If a square matrix A is involutory, then A^(2n+1) is equal to:

    Text Solution

    |

  3. If A=[[cos theta,sin theta],[-sin theta,cos theta]], then lim (n rarr...

    Text Solution

    |

  4. The rank of the matrix [[-1,2,5],[2,-4,a-4],[1,-2,a+1]] is (where a = ...

    Text Solution

    |

  5. A is an involuntary matrix given by A=[(0,1,-1),(4,-3,4),(3,-3,4)], th...

    Text Solution

    |

  6. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  7. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  8. If matrix A=[a(ij)](3xx), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0 ...

    Text Solution

    |

  9. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  10. If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-is...

    Text Solution

    |

  11. The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s...

    Text Solution

    |

  12. if A and B are squares matrices such that A^(2006)=O and A B=A+B , the...

    Text Solution

    |

  13. If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(p...

    Text Solution

    |

  14. There are two possible values of A in the solution of the matrix equ...

    Text Solution

    |

  15. If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...

    Text Solution

    |

  16. In a square matrix A of order 3 the elements a(ij) 's are the sum of...

    Text Solution

    |

  17. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  18. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  19. If A is a square matrix of order 3 such that abs(A)=2, then abs((adj...

    Text Solution

    |

  20. If A and B are different matrices satisfying A^(3) = B^(3) and A^(2)...

    Text Solution

    |