Home
Class 12
MATHS
If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/...

If `A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-isqrt(3))/(2i)]]`, `i = sqrt(-1) and f (x) = x^(2) + 2, `
then `f(A)` equals to

A

`[[1,0],[0,1]]`

B

`((3-isqrt(3))/2)[[1,0],[0,1]]`

C

`((5-isqrt(3))/2)[[1,0],[0,1]]`

D

`(2+isqrt(3))[[1,0],[0,1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(A) \) where \( A \) is given as: \[ A = \begin{pmatrix} \frac{-1 + i\sqrt{3}}{2i} & \frac{-1 - i\sqrt{3}}{2i} \\ \frac{1 + i\sqrt{3}}{2i} & \frac{1 - i\sqrt{3}}{2i} \end{pmatrix} \] and \( f(x) = x^2 + 2 \). ### Step 1: Identify the values of \( \omega \) and \( \omega^2 \) We recognize that the elements of matrix \( A \) can be expressed in terms of the cube roots of unity. Let: \[ \omega = \frac{-1 + i\sqrt{3}}{2} \quad \text{and} \quad \omega^2 = \frac{-1 - i\sqrt{3}}{2} \] These correspond to the cube roots of unity, where \( \omega^3 = 1 \) and \( \omega + \omega^2 + 1 = 0 \). ### Step 2: Rewrite matrix \( A \) Using the values of \( \omega \) and \( \omega^2 \), we can rewrite matrix \( A \): \[ A = \begin{pmatrix} -\frac{i}{2} \omega & -\frac{i}{2} \omega^2 \\ \frac{i}{2} \omega^2 & \frac{i}{2} \omega \end{pmatrix} \] ### Step 3: Calculate \( A^2 \) To find \( f(A) = A^2 + 2I \), we first need to compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} -\frac{i}{2} \omega & -\frac{i}{2} \omega^2 \\ \frac{i}{2} \omega^2 & \frac{i}{2} \omega \end{pmatrix} \cdot \begin{pmatrix} -\frac{i}{2} \omega & -\frac{i}{2} \omega^2 \\ \frac{i}{2} \omega^2 & \frac{i}{2} \omega \end{pmatrix} \] Calculating the elements of \( A^2 \): 1. First row, first column: \[ \left(-\frac{i}{2} \omega\right)\left(-\frac{i}{2} \omega\right) + \left(-\frac{i}{2} \omega^2\right)\left(\frac{i}{2} \omega^2\right) = \frac{-1}{4} \omega^2 + \frac{-1}{4} \omega^4 = \frac{-1}{4}(\omega^2 + \omega) = \frac{-1}{4}(-1) = \frac{1}{4} \] 2. First row, second column: \[ \left(-\frac{i}{2} \omega\right)\left(-\frac{i}{2} \omega^2\right) + \left(-\frac{i}{2} \omega^2\right)\left(\frac{i}{2} \omega\right) = \frac{-1}{4} \omega^3 + \frac{-1}{4} \omega^3 = \frac{-1}{2} = 0 \] 3. Second row, first column: \[ \left(\frac{i}{2} \omega^2\right)\left(-\frac{i}{2} \omega\right) + \left(\frac{i}{2} \omega\right)\left(\frac{i}{2} \omega^2\right) = \frac{-1}{4} \omega^3 + \frac{-1}{4} \omega^3 = \frac{-1}{2} = 0 \] 4. Second row, second column: \[ \left(\frac{i}{2} \omega^2\right)\left(-\frac{i}{2} \omega^2\right) + \left(\frac{i}{2} \omega\right)\left(\frac{i}{2} \omega\right) = \frac{-1}{4} \omega^4 + \frac{-1}{4} \omega^2 = \frac{-1}{4}(-1) = \frac{1}{4} \] Thus, we have: \[ A^2 = \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{pmatrix} \] ### Step 4: Calculate \( f(A) \) Now we can calculate \( f(A) \): \[ f(A) = A^2 + 2I = \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} + 2 & 0 \\ 0 & \frac{1}{4} + 2 \end{pmatrix} \] Calculating the final values: \[ f(A) = \begin{pmatrix} \frac{1}{4} + \frac{8}{4} & 0 \\ 0 & \frac{1}{4} + \frac{8}{4} \end{pmatrix} = \begin{pmatrix} \frac{9}{4} & 0 \\ 0 & \frac{9}{4} \end{pmatrix} \] ### Final Answer Thus, the final result is: \[ f(A) = \frac{9}{4} I = \frac{9}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

To solve the problem, we need to find \( f(A) \) where \( A \) is given as: \[ A = \begin{pmatrix} \frac{-1 + i\sqrt{3}}{2i} & \frac{-1 - i\sqrt{3}}{2i} \\ \frac{1 + i\sqrt{3}}{2i} & \frac{1 - i\sqrt{3}}{2i} \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

((-1+isqrt(3))/2)^6+((-1-isqrt(3))/2)^6+((-1+isqrt(3))/2)^5+((-1-isqrt(3))/2)^5 is equal to

The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(6) is

([(sqrt(2)+isqrt(3))+(sqrt(2)-isqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

The argument of (1-isqrt(3))/(1+isqrt(3)) , is

Find the value of : (1+ isqrt(3))^(2) + (1-isqrt(3))^(2)

The principal argument of (1-isqrt(3))/(1+isqrt(3))

For n=6k, k in z, ((1-isqrt(3))/(2))^(n)+((-1-isqrt(3))/(2))^(n) has the value

If f(x)=3x^(3)-2x^(2)+x-2 , and i =sqrt(-1) then f(i) =

What is the value of ((1)/(2)+isqrt(5))((1)/(2)-isqrt(5)) ?

(sqrt(-2))(sqrt(-3)) is equal to A. sqrt(6) B. -sqrt(6) C. isqrt(6) D. none of these

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Single Option Correct Type Questions)
  1. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  2. If matrix A=[a(ij)](3xx), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0 ...

    Text Solution

    |

  3. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  4. If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-is...

    Text Solution

    |

  5. The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s...

    Text Solution

    |

  6. if A and B are squares matrices such that A^(2006)=O and A B=A+B , the...

    Text Solution

    |

  7. If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(p...

    Text Solution

    |

  8. There are two possible values of A in the solution of the matrix equ...

    Text Solution

    |

  9. If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...

    Text Solution

    |

  10. In a square matrix A of order 3 the elements a(ij) 's are the sum of...

    Text Solution

    |

  11. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  12. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  13. If A is a square matrix of order 3 such that abs(A)=2, then abs((adj...

    Text Solution

    |

  14. If A and B are different matrices satisfying A^(3) = B^(3) and A^(2)...

    Text Solution

    |

  15. Show that A is a symmetric matrix if A= [ (1,0), (0, -1)]

    Text Solution

    |

  16. If A = [[a,b,c],[x,y,z],[p,q,r]], B= [[q , -b,y],[-p,a,-x],[r,-c,z]] a...

    Text Solution

    |

  17. Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4)...

    Text Solution

    |

  18. If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  19. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  20. Given the matrix A=[[x,3,2],[1,y,4],[2,2,z]]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |