Home
Class 12
MATHS
If P = [[cos frac(pi)(6), sin frac(pi)(6...

If `P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(pi)(6)]], A = [[1,1],[0,1]] then `P+ A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question, we need to find the sum of the matrices \( P \) and \( A \). Let's break it down step by step. ### Step 1: Define the matrices \( P \) and \( A \) The matrix \( P \) is defined as: \[ P = \begin{bmatrix} \cos\left(\frac{\pi}{6}\right) & \sin\left(\frac{\pi}{6}\right) \\ -\sin\left(\frac{\pi}{6}\right) & \cos\left(\frac{\pi}{6}\right) \end{bmatrix} \] The matrix \( A \) is defined as: \[ A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \] ### Step 2: Calculate the trigonometric values We need to calculate \( \cos\left(\frac{\pi}{6}\right) \) and \( \sin\left(\frac{\pi}{6}\right) \): - \( \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \) - \( \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \) ### Step 3: Substitute the trigonometric values into matrix \( P \) Now we can substitute these values into the matrix \( P \): \[ P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \] ### Step 4: Add the matrices \( P \) and \( A \) Now we will add the matrices \( P \) and \( A \): \[ P + A = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \] To add the matrices, we add the corresponding elements: \[ P + A = \begin{bmatrix} \frac{\sqrt{3}}{2} + 1 & \frac{1}{2} + 1 \\ -\frac{1}{2} + 0 & \frac{\sqrt{3}}{2} + 1 \end{bmatrix} \] ### Step 5: Simplify the resulting matrix Now we simplify each element: 1. \( \frac{\sqrt{3}}{2} + 1 = \frac{\sqrt{3} + 2}{2} \) 2. \( \frac{1}{2} + 1 = \frac{1 + 2}{2} = \frac{3}{2} \) 3. \( -\frac{1}{2} + 0 = -\frac{1}{2} \) 4. \( \frac{\sqrt{3}}{2} + 1 = \frac{\sqrt{3} + 2}{2} \) Thus, the final result is: \[ P + A = \begin{bmatrix} \frac{\sqrt{3} + 2}{2} & \frac{3}{2} \\ -\frac{1}{2} & \frac{\sqrt{3} + 2}{2} \end{bmatrix} \] ### Final Answer \[ P + A = \begin{bmatrix} \frac{\sqrt{3} + 2}{2} & \frac{3}{2} \\ -\frac{1}{2} & \frac{\sqrt{3} + 2}{2} \end{bmatrix} \]

To solve the question, we need to find the sum of the matrices \( P \) and \( A \). Let's break it down step by step. ### Step 1: Define the matrices \( P \) and \( A \) The matrix \( P \) is defined as: \[ P = \begin{bmatrix} \cos\left(\frac{\pi}{6}\right) & \sin\left(\frac{\pi}{6}\right) \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

cos((11 pi)/(6))=

cos frac{3pi}{4}-iota sin frac{3pi}{4}

Let A=[[1,1],[0,1]] and P=[[cos(pi/6),sin(pi/6)],[-sin(pi/6),cos(pi/6)]] and Q=PAP^T then P^T Q^2013 P is:

The value of (sin frac(pi)(8) + i cos frac(pi)(8))^(8)/((sin frac(pi)(8) - i cos frac(pi)(8))^(8)) is :

sin^-1 (sin frac {2pi}3 )

2sin((2 pi)/(6))+cosec^(2)((pi)/(6))*cos^(2)((pi)/(3))=?

Prove that: 3sin(pi/6)sec(pi/3)-4sin((5pi)/6)cot(pi/4)=1

sin^(-1)(sin ((7pi)/6))

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Single Option Correct Type Questions)
  1. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  2. If matrix A=[a(ij)](3xx), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0 ...

    Text Solution

    |

  3. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  4. If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-is...

    Text Solution

    |

  5. The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s...

    Text Solution

    |

  6. if A and B are squares matrices such that A^(2006)=O and A B=A+B , the...

    Text Solution

    |

  7. If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(p...

    Text Solution

    |

  8. There are two possible values of A in the solution of the matrix equ...

    Text Solution

    |

  9. If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...

    Text Solution

    |

  10. In a square matrix A of order 3 the elements a(ij) 's are the sum of...

    Text Solution

    |

  11. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  12. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  13. If A is a square matrix of order 3 such that abs(A)=2, then abs((adj...

    Text Solution

    |

  14. If A and B are different matrices satisfying A^(3) = B^(3) and A^(2)...

    Text Solution

    |

  15. Show that A is a symmetric matrix if A= [ (1,0), (0, -1)]

    Text Solution

    |

  16. If A = [[a,b,c],[x,y,z],[p,q,r]], B= [[q , -b,y],[-p,a,-x],[r,-c,z]] a...

    Text Solution

    |

  17. Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4)...

    Text Solution

    |

  18. If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  19. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  20. Given the matrix A=[[x,3,2],[1,y,4],[2,2,z]]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |