Home
Class 12
MATHS
There are two possible values of A in th...

There are two possible values of A in the solution of the
matrix equation `[[2A+1,-5],[-4,A]]^(-1) [[A-5,B],[2A-2,C]]= [[14,D],[E,F]]`,
where A, B, C, D, E, F are real numbers. The absolute
value of the difference of these two solutions, is

A

`8/3`

B

`11/3`

C

`1/3`

D

`19/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the matrix equation given in the problem, we will follow these steps: ### Step 1: Write down the matrix equation The matrix equation is given as: \[ \begin{bmatrix} 2A + 1 & -5 \\ -4 & A \end{bmatrix}^{-1} \begin{bmatrix} A - 5 & B \\ 2A - 2 & C \end{bmatrix} = \begin{bmatrix} 14 & D \\ E & F \end{bmatrix} \] ### Step 2: Find the inverse of the first matrix For a 2x2 matrix \[ \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \] the inverse is given by: \[ \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}. \] Here, \( a = 2A + 1 \), \( b = -5 \), \( c = -4 \), and \( d = A \). #### Calculate the determinant: \[ \text{det} = (2A + 1)A - (-5)(-4) = 2A^2 + A - 20. \] #### Calculate the adjoint: \[ \text{adjoint} = \begin{bmatrix} A & 5 \\ 4 & 2A + 1 \end{bmatrix}. \] #### Therefore, the inverse is: \[ \begin{bmatrix} 2A + 1 & -5 \\ -4 & A \end{bmatrix}^{-1} = \frac{1}{2A^2 + A - 20} \begin{bmatrix} A & 5 \\ 4 & 2A + 1 \end{bmatrix}. \] ### Step 3: Multiply the inverse with the second matrix Now we need to multiply the inverse with the second matrix: \[ \frac{1}{2A^2 + A - 20} \begin{bmatrix} A & 5 \\ 4 & 2A + 1 \end{bmatrix} \begin{bmatrix} A - 5 & B \\ 2A - 2 & C \end{bmatrix}. \] #### Performing the multiplication: The resulting matrix will be: \[ \begin{bmatrix} A(A - 5) + 5(2A - 2) & AB + 5C \\ 4(A - 5) + (2A + 1)(2A - 2) & 4B + (2A + 1)C \end{bmatrix}. \] ### Step 4: Set the resulting matrix equal to the right-hand side This gives us: \[ \begin{bmatrix} A^2 - 5A + 10A - 10 & AB + 5C \\ 4A - 20 + 4A^2 - 4A + 2A + 1 & 4B + (2A + 1)C \end{bmatrix} = \begin{bmatrix} 14 & D \\ E & F \end{bmatrix}. \] ### Step 5: Equate the elements From the first element: \[ A^2 + 5A - 10 = 14 \implies A^2 + 5A - 24 = 0. \] ### Step 6: Solve the quadratic equation Using the quadratic formula \( A = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = 5, c = -24 \): \[ A = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot (-24)}}{2 \cdot 1} = \frac{-5 \pm \sqrt{25 + 96}}{2} = \frac{-5 \pm \sqrt{121}}{2} = \frac{-5 \pm 11}{2}. \] Thus, we have two solutions: 1. \( A = \frac{6}{2} = 3 \) 2. \( A = \frac{-16}{2} = -8 \) ### Step 7: Find the absolute difference The absolute value of the difference between the two solutions \( A = 3 \) and \( A = -8 \) is: \[ |3 - (-8)| = |3 + 8| = 11. \] ### Final Answer The absolute value of the difference of these two solutions is \( \boxed{11} \).

To solve the matrix equation given in the problem, we will follow these steps: ### Step 1: Write down the matrix equation The matrix equation is given as: \[ \begin{bmatrix} 2A + 1 & -5 \\ -4 & A ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

There are two possible values of A in the solution of the matrix equation [(2A+1,-5),(-4,A)]^(-1) [(A-5,B),(2A-2,C)]=[(14,D),(E,F)] where A, B, C, D, E and F are real numbers. The absolute value of the difference of these two solutions, is

The number of solutions of the matrix equation X^2=[[1, 1],[ 2, 3]] is (A) more than 2 (B) 2 (C) 0 (D) 1

Find the value of a, b, c and d from the equation: [[a-b],[2a+c][2a-b,3c+d]]=[[-1 ,5 ],[0 ,13]]

Find the value of a, b, c and d from the equation: [[a-b,2a+c],[2a-b,3c+d]]=[[-1, 5],[ 0 ,13]]

The number of real solutions of the equation x^(2)+5|x|+4=0 are A) 4 B) 2 C) 1 D) 0

The number of real solutions of the equation -x^2+x-1=sin^4x is (A) 1 (B) 2 (C) 0 (D) 4

If the rank of the matrix [[-1,2,5],[2,-4,a-4],[1,-2,a+1]] is 1 then the value of a is (A) -1 (B) 2 (C) -6 (D) 4

Number of distinct real solutions of the equation x^(2)+((x)/(x-1))^(2)=8 is (a) 1 (b) 2 (c)3 (d)4

In Figure A B C D\ a n d\ A E F D are two parallelograms. Prove that: P E=F Q

In Figure, A ,\ B ,\ C\ a n d\ D ,\ E ,\ F are two sets of collinear points. Prove that A D || C F

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Single Option Correct Type Questions)
  1. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  2. If matrix A=[a(ij)](3xx), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0 ...

    Text Solution

    |

  3. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  4. If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-is...

    Text Solution

    |

  5. The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s...

    Text Solution

    |

  6. if A and B are squares matrices such that A^(2006)=O and A B=A+B , the...

    Text Solution

    |

  7. If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(p...

    Text Solution

    |

  8. There are two possible values of A in the solution of the matrix equ...

    Text Solution

    |

  9. If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...

    Text Solution

    |

  10. In a square matrix A of order 3 the elements a(ij) 's are the sum of...

    Text Solution

    |

  11. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  12. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  13. If A is a square matrix of order 3 such that abs(A)=2, then abs((adj...

    Text Solution

    |

  14. If A and B are different matrices satisfying A^(3) = B^(3) and A^(2)...

    Text Solution

    |

  15. Show that A is a symmetric matrix if A= [ (1,0), (0, -1)]

    Text Solution

    |

  16. If A = [[a,b,c],[x,y,z],[p,q,r]], B= [[q , -b,y],[-p,a,-x],[r,-c,z]] a...

    Text Solution

    |

  17. Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4)...

    Text Solution

    |

  18. If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  19. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  20. Given the matrix A=[[x,3,2],[1,y,4],[2,2,z]]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |