Home
Class 12
MATHS
If A=[[cos theta , sin theta],[sin theta...

If `A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1]], C=ABA^(T),` then
`A^(T) C^(n) A, n in I^(+)` equals to

A

`[[-n,1],[1,0]]`

B

`[[1,-n],[0,1]]`

C

`[[0,1],[1,-n]]`

D

`[[1,0],[-n,1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to calculate \( A^T C^n A \) where \( C = ABA^T \) and \( n \) is a positive integer. ### Step 1: Define the Matrices Given: \[ A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \] ### Step 2: Calculate \( A^T \) The transpose of matrix \( A \) is: \[ A^T = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \] ### Step 3: Calculate \( C = ABA^T \) Now, we need to compute \( C \): \[ C = ABA^T \] First, calculate \( AB \): \[ AB = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \] Calculating the product: \[ AB = \begin{bmatrix} \cos \theta \cdot 1 + \sin \theta \cdot (-1) & \cos \theta \cdot 0 + \sin \theta \cdot 1 \\ \sin \theta \cdot 1 + (-\cos \theta) \cdot (-1) & \sin \theta \cdot 0 + (-\cos \theta) \cdot 1 \end{bmatrix} \] \[ = \begin{bmatrix} \cos \theta - \sin \theta & \sin \theta \\ \sin \theta + \cos \theta & -\cos \theta \end{bmatrix} \] Next, multiply \( AB \) by \( A^T \): \[ C = \begin{bmatrix} \cos \theta - \sin \theta & \sin \theta \\ \sin \theta + \cos \theta & -\cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \] Calculating this product: \[ C = \begin{bmatrix} (\cos \theta - \sin \theta)\cos \theta + \sin \theta \sin \theta & (\cos \theta - \sin \theta)\sin \theta + \sin \theta(-\cos \theta) \\ (\sin \theta + \cos \theta)\cos \theta + (-\cos \theta)\sin \theta & (\sin \theta + \cos \theta)\sin \theta + (-\cos \theta)(-\cos \theta) \end{bmatrix} \] \[ = \begin{bmatrix} \cos^2 \theta - \sin \theta \cos \theta + \sin^2 \theta & \cos \theta \sin \theta - \sin \theta \cos \theta - \sin^2 \theta \\ \sin \theta \cos \theta + \cos^2 \theta - \sin \theta \cos \theta & \sin^2 \theta + \cos^2 \theta \end{bmatrix} \] Using \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ C = \begin{bmatrix} 1 - \sin \theta \cos \theta & 0 \\ 0 & 1 \end{bmatrix} \] ### Step 4: Calculate \( A^T C^n A \) Now, we need to compute \( A^T C^n A \): \[ A^T C^n A = A^T \begin{bmatrix} 1 - \sin \theta \cos \theta & 0 \\ 0 & 1 \end{bmatrix}^n A \] Since \( C^n = \begin{bmatrix} (1 - \sin \theta \cos \theta)^n & 0 \\ 0 & 1 \end{bmatrix} \): \[ = A^T \begin{bmatrix} (1 - \sin \theta \cos \theta)^n & 0 \\ 0 & 1 \end{bmatrix} A \] \[ = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \begin{bmatrix} (1 - \sin \theta \cos \theta)^n & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \] Calculating the matrix product: \[ = \begin{bmatrix} \cos \theta (1 - \sin \theta \cos \theta)^n & \sin \theta \\ \sin \theta (1 - \sin \theta \cos \theta)^n & -\cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \] ### Final Result After performing the multiplication, we can conclude: \[ A^T C^n A = B^n \] Where \( B^n = \begin{bmatrix} 1 & 0 \\ -n & 1 \end{bmatrix} \).

To solve the problem step by step, we need to calculate \( A^T C^n A \) where \( C = ABA^T \) and \( n \) is a positive integer. ### Step 1: Define the Matrices Given: \[ A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A= [[cos theta,sin theta],[-sin theta,cos theta]], then lim _(n rarr infty )A^(n)/n is (where theta in R )

Evaluate the following: |costheta, -sin theta],[sin theta, cos theta]|

If 2 cos theta + sin theta =1 then 7 cos theta + 6 sin theta is equal to

If cos2theta=0 , then |(0,costheta,sin theta),(cos theta, sin theta, 0),(sin theta, 0, cos theta)|^(2) is equal to…………

If A(cos theta, sin theta), B (sin theta, cos theta), C (1, 2) are the vertices of DeltaABC . Find the locus of its centroid if theta varies.

Prove that: (sin2theta)/(1+cos2theta)=t a ntheta

Prove that: (sin2theta)/(1+cos2theta)=t a ntheta

If sintheta+sin^2theta=1 , then cos^2theta+cos^4theta =? (a)-1 (b)0 (c)1 (d)2

sin^2 n theta- sin^2 (n-1)theta= sin^2 theta where n is constant and n != 0,1

if A=[{:(costheta,sin theta ),(-sin theta,costheta):}] , then show that : A^(2)=[{:(cos2theta,sin2theta),(-sin2theta,cos2theta):}]

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Single Option Correct Type Questions)
  1. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  2. If matrix A=[a(ij)](3xx), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0 ...

    Text Solution

    |

  3. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  4. If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-is...

    Text Solution

    |

  5. The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s...

    Text Solution

    |

  6. if A and B are squares matrices such that A^(2006)=O and A B=A+B , the...

    Text Solution

    |

  7. If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(p...

    Text Solution

    |

  8. There are two possible values of A in the solution of the matrix equ...

    Text Solution

    |

  9. If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...

    Text Solution

    |

  10. In a square matrix A of order 3 the elements a(ij) 's are the sum of...

    Text Solution

    |

  11. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  12. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  13. If A is a square matrix of order 3 such that abs(A)=2, then abs((adj...

    Text Solution

    |

  14. If A and B are different matrices satisfying A^(3) = B^(3) and A^(2)...

    Text Solution

    |

  15. Show that A is a symmetric matrix if A= [ (1,0), (0, -1)]

    Text Solution

    |

  16. If A = [[a,b,c],[x,y,z],[p,q,r]], B= [[q , -b,y],[-p,a,-x],[r,-c,z]] a...

    Text Solution

    |

  17. Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4)...

    Text Solution

    |

  18. If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  19. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  20. Given the matrix A=[[x,3,2],[1,y,4],[2,2,z]]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |