Home
Class 12
MATHS
If A and B are different matrices satisf...

If `A` and `B` are different matrices satisfying `A^(3) = B^(3)` and
`A^(2) B = B^(2) A`, then

A

`det (A^(2) + B^(2))` must be zero

B

det `(A-B)` must be zero

C

`det (A^(2) + B^(2))` as well as `det (A - B)` must be zero

D

alteast one of `det (A^(2) + B^(2))` or `det (A - B)` must be zero

Text Solution

Verified by Experts

The correct Answer is:
D

`because A^(3) - A^(2) B = B^(3) - B^(2) A `
`rArr A^(2) (A-B) = B^(2)(B-A)`
or `(A^(2) + B^(2)) (A-B) =0`
or det `(A^(2)+B^(2)) cdot det (A-B) = 0`
Either det `(A^(2) + B^(2)) = 0` or det `(A-B) = 0`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

A and B are different matrices of order n satisfying A^(3)=B^(3) and A^(2)B=B^(2)A . If det. (A-B) ne 0 , then find the value of det. (A^(2)+B^(2)) .

If A and B are any two different square matrices of order n with A^3=B^3 and A(AB)=B(BA) then

If A and B are square matrices of order 3, then

If A and B are square matrices of order 3 such that "AA"^(T)=3B and 2AB^(-1)=3A^(-1)B , then the value of (|B|^(2))/(16) is equal to

If A and B are two matrices of order 3xx3 satisfying AB=A and BA=B , then (A+B)^(5) is equal to

If A and B are two square matrices of same order satisfying AB=A and BA=B, then B^2 is equal to (A) A (B) B (C) A^2 (D) none of these

Let A and B are square matrices of same order satisfying A B=A ,a n dB A=B , then (A^(2015)+B^(2015))^(2016) is equal to 2^(2015)(A^3+B^3) (b) 2^(2016)(A^2+B^2) 2^(2016)(A^3+B^3) (d) 2^(2015)(A+B)

If A and B are square matrices of order 3 such that |A| = 3 and |B| = 2 , then the value of |A^(-1) adj(B^(-1)) adj (3A^(-1))| is equal to

If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I , then tr. (A^(2)+B^(2)) is equal to ________.

Let A and B are square matrices of order 3 such that AB^(2)=BA and BA^(2)=AB . If (AB)^(3)=A^(3)B^(m) , then m is equal to

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Single Option Correct Type Questions)
  1. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  2. If matrix A=[a(ij)](3xx), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0 ...

    Text Solution

    |

  3. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  4. If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-is...

    Text Solution

    |

  5. The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s...

    Text Solution

    |

  6. if A and B are squares matrices such that A^(2006)=O and A B=A+B , the...

    Text Solution

    |

  7. If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(p...

    Text Solution

    |

  8. There are two possible values of A in the solution of the matrix equ...

    Text Solution

    |

  9. If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...

    Text Solution

    |

  10. In a square matrix A of order 3 the elements a(ij) 's are the sum of...

    Text Solution

    |

  11. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  12. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  13. If A is a square matrix of order 3 such that abs(A)=2, then abs((adj...

    Text Solution

    |

  14. If A and B are different matrices satisfying A^(3) = B^(3) and A^(2)...

    Text Solution

    |

  15. Show that A is a symmetric matrix if A= [ (1,0), (0, -1)]

    Text Solution

    |

  16. If A = [[a,b,c],[x,y,z],[p,q,r]], B= [[q , -b,y],[-p,a,-x],[r,-c,z]] a...

    Text Solution

    |

  17. Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4)...

    Text Solution

    |

  18. If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  19. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  20. Given the matrix A=[[x,3,2],[1,y,4],[2,2,z]]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |