Home
Class 12
MATHS
If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1...

If `A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[5//2,-3//2,1//2]]` then

A

`a = 1, b = -1`

B

`a = 2, b = -1/2`

C

`a = -1, b=1`

D

`a=1/2, b=1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) in the matrices given. The relationship between a matrix and its inverse is that the product of a matrix and its inverse equals the identity matrix. Given: \[ A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \] \[ A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & b \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} \] ### Step 1: Multiply \( A \) and \( A^{-1} \) We need to calculate \( A \cdot A^{-1} \) and set it equal to the identity matrix \( I \): \[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] ### Step 2: Calculate the elements of \( A \cdot A^{-1} \) We will multiply the matrices \( A \) and \( A^{-1} \): 1. **First Row:** - First Column: \( 0 \cdot \frac{1}{2} + 1 \cdot (-4) + 2 \cdot \frac{5}{2} = 0 - 4 + 5 = 1 \) - Second Column: \( 0 \cdot (-\frac{1}{2}) + 1 \cdot 3 + 2 \cdot (-\frac{3}{2}) = 0 + 3 - 3 = 0 \) - Third Column: \( 0 \cdot \frac{1}{2} + 1 \cdot b + 2 \cdot \frac{1}{2} = 0 + b + 1 = b + 1 \) 2. **Second Row:** - First Column: \( 1 \cdot \frac{1}{2} + 2 \cdot (-4) + 3 \cdot \frac{5}{2} = \frac{1}{2} - 8 + \frac{15}{2} = \frac{1 + 15 - 16}{2} = 0 \) - Second Column: \( 1 \cdot (-\frac{1}{2}) + 2 \cdot 3 + 3 \cdot (-\frac{3}{2}) = -\frac{1}{2} + 6 - \frac{9}{2} = -\frac{10}{2} + 6 = 3 - 5 = -2 \) - Third Column: \( 1 \cdot \frac{1}{2} + 2 \cdot b + 3 \cdot \frac{1}{2} = \frac{1}{2} + 2b + \frac{3}{2} = 2b + 2 \) 3. **Third Row:** - First Column: \( 3 \cdot \frac{1}{2} + a \cdot (-4) + 1 \cdot \frac{5}{2} = \frac{3}{2} - 4a + \frac{5}{2} = 4 - 4a = 0 \) - Second Column: \( 3 \cdot (-\frac{1}{2}) + a \cdot 3 + 1 \cdot (-\frac{3}{2}) = -\frac{3}{2} + 3a - \frac{3}{2} = 3a - 3 = 0 \) - Third Column: \( 3 \cdot \frac{1}{2} + a \cdot b + 1 \cdot \frac{1}{2} = \frac{3}{2} + ab + \frac{1}{2} = ab + 2 \) ### Step 3: Set the products equal to the identity matrix From the calculations, we have: 1. \( b + 1 = 0 \) (from the first row, third column) 2. \( 2b + 2 = 0 \) (from the second row, third column) 3. \( 4 - 4a = 0 \) (from the third row, first column) 4. \( 3a - 3 = 0 \) (from the third row, second column) 5. \( ab + 2 = 0 \) (from the third row, third column) ### Step 4: Solve the equations 1. From \( b + 1 = 0 \), we get \( b = -1 \). 2. From \( 2b + 2 = 0 \), substituting \( b = -1 \) gives \( 2(-1) + 2 = 0 \) which is consistent. 3. From \( 4 - 4a = 0 \), we get \( 4a = 4 \) leading to \( a = 1 \). 4. From \( 3a - 3 = 0 \), substituting \( a = 1 \) gives \( 3(1) - 3 = 0 \) which is consistent. 5. From \( ab + 2 = 0 \), substituting \( a = 1 \) and \( b = -1 \) gives \( 1(-1) + 2 = 1 \), which is not satisfied. ### Conclusion Thus, the values are: - \( a = 1 \) - \( b = -1 \)

To solve the problem, we need to find the values of \( a \) and \( b \) in the matrices given. The relationship between a matrix and its inverse is that the product of a matrix and its inverse equals the identity matrix. Given: \[ A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \] \[ A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & b \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A=[[0 ,1 ,3],[ 1, 2,x],[2, 3, 1]] and A^(-1)=[[1//2,-4 ,5//2],[-1//2, 3,-3//2],[ 1//2,y,1//2]] ,find x ,\ y .

If A=[[1,2,-3] , [5,0,2] , [1,-1,1]] and B=[[3,-1,2] , [4,2,5] , [2,0,3]] then find matrix C such that A+2C=B

If A=[[1 ,2,-3],[ 5, 0, 2],[ 1,-1, 1]], B=[[3,-1, 2],[ 4, 2 ,5],[ 2, 0, 3]] and C=[[4, 1, 2],[ 0, 3, 2],[ 1,-2, 3]] , then compute (A+B) and (B - C) . Also, verify that A + (B - C) = (A + B) - C .

If A=[[-1,-1,3],[1,2,4],[2,-1,3]],B=[[1,-2,5],[0,-2,2],[1,2,-3]],C=[[-2,1,2],[1,1,2],[2,0,1]] then find A+B+C

If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]], C=[[-1,-2,1],[-1,2,3],[-1,-2,2]] find A-2B+3C

If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]] and C=[[-1,-2,1],[-1,2,3],[-1,-2,2]] verify that A+(B+C)=(A+B)+C

Given A=[[1,2,-3],[5,0,2],[1,-1,1]] and B=[[3,-1,2],[4,2,5],[2,0,3]] , find the matrix C such that A+C=B.

If A =[[1,2,3],[-1,0,2],[1,-3,-1]] , B= [[4,5,6],[-1,0,1],[2,1,2]] and C=[[-1,-2,1], [-1,2,3],[-1,-2,2]] verify that A(B+C)=AB+AC .

If A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] find AB and BA.

If A = [[-1, 2 ,3],[-1, 0, 2],[1, -3, 1]] and B = [[4,5,6],[-1, 0, 1], [2,1,2]], find 4A-3B

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Single Option Correct Type Questions)
  1. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  2. If matrix A=[a(ij)](3xx), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0 ...

    Text Solution

    |

  3. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  4. If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-is...

    Text Solution

    |

  5. The number of 2x2 matrices X satisfying the matrix equation X^2=I(Ii s...

    Text Solution

    |

  6. if A and B are squares matrices such that A^(2006)=O and A B=A+B , the...

    Text Solution

    |

  7. If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(p...

    Text Solution

    |

  8. There are two possible values of A in the solution of the matrix equ...

    Text Solution

    |

  9. If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...

    Text Solution

    |

  10. In a square matrix A of order 3 the elements a(ij) 's are the sum of...

    Text Solution

    |

  11. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  12. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  13. If A is a square matrix of order 3 such that abs(A)=2, then abs((adj...

    Text Solution

    |

  14. If A and B are different matrices satisfying A^(3) = B^(3) and A^(2)...

    Text Solution

    |

  15. Show that A is a symmetric matrix if A= [ (1,0), (0, -1)]

    Text Solution

    |

  16. If A = [[a,b,c],[x,y,z],[p,q,r]], B= [[q , -b,y],[-p,a,-x],[r,-c,z]] a...

    Text Solution

    |

  17. Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4)...

    Text Solution

    |

  18. If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  19. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  20. Given the matrix A=[[x,3,2],[1,y,4],[2,2,z]]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |