Home
Class 12
MATHS
y=[log(x+sqrt(x^2+1))]^2 then prove that...

`y=[log(x+sqrt(x^2+1))]^2` then prove that `(x^2+1)y_2+x y_1=2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|11 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y sqrt(x^(2)+1)= log (sqrt(x^(2)+1)-x) , prove that (x^(2)+1)(dy)/(dx) +xy+1=0 .

If y=(sin^(-1)x)^2 , prove that (1-x^2)y_2-x y_1-2=0 .

If y=(sin^(-1)x)^2 ,prove that (1-x^2)y_2-x y_1-2=0.

if y= (sin ^(-1)x)/(sqrt(1-x^2)) then prove that (1-x)^2) .d/dx=xy+1

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=(tan^(-1)x)^2 , then prove that (1+x^2)^2\ y_2+2x\ (1+x^2)y_1=2 .

If y=[x+sqrt(x^2-1)]^(15)+[x-sqrt(x^2-1)]^(15) then prove that (x^2-1)(d^2y)/(dx^2)+x(dy)/(dx)-225y=0

If y={x+sqrt(x^2+1)}^m , show that (x^2+1)y_2+x y_1-m^2\ y=0

(i) If y^(1//m) + y^(-1//m) = 2x , then prove that (x^(2)-1) (d^(2)y)/(dx^(2)) + x (dy)/(dx) - m^(2)y =0 (ii) If y = ln (x + sqrt(1+x^(2))) , then prove that (1+x^(2)) (d^(2)y)/(dx^(2)) + x (dy)/(dx)=0