Home
Class 12
MATHS
x=acos^(3)theta,y=asin^(3)theta then fin...

`x=acos^(3)theta,y=asin^(3)theta` then find `(d^(2)y)/(dx^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \(\frac{d^2y}{dx^2}\) for the given equations \(x = a \cos^3 \theta\) and \(y = a \sin^3 \theta\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = a \cos^3 \theta \] Using the chain rule: \[ \frac{dx}{d\theta} = a \cdot 3 \cos^2 \theta \cdot (-\sin \theta) = -3a \cos^2 \theta \sin \theta \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = a \sin^3 \theta \] Using the chain rule: \[ \frac{dy}{d\theta} = a \cdot 3 \sin^2 \theta \cdot \cos \theta = 3a \sin^2 \theta \cos \theta \] ### Step 3: Find \(\frac{dy}{dx}\) Using the formula for derivatives: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the values from Steps 1 and 2: \[ \frac{dy}{dx} = \frac{3a \sin^2 \theta \cos \theta}{-3a \cos^2 \theta \sin \theta} \] Simplifying: \[ \frac{dy}{dx} = \frac{3 \sin^2 \theta \cos \theta}{-3 \cos^2 \theta \sin \theta} = -\frac{\sin \theta}{\cos \theta} = -\tan \theta \] ### Step 4: Differentiate \(\frac{dy}{dx}\) with respect to \(x\) To find \(\frac{d^2y}{dx^2}\), we differentiate \(\frac{dy}{dx}\) with respect to \(\theta\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\tan \theta\right) = \frac{d}{d\theta}\left(-\tan \theta\right) \cdot \frac{d\theta}{dx} \] The derivative of \(-\tan \theta\) is: \[ -\sec^2 \theta \] Now, we need \(\frac{d\theta}{dx}\): \[ \frac{d\theta}{dx} = \frac{1}{\frac{dx}{d\theta}} = \frac{1}{-3a \cos^2 \theta \sin \theta} \] Thus, \[ \frac{d^2y}{dx^2} = -\sec^2 \theta \cdot \left(\frac{1}{-3a \cos^2 \theta \sin \theta}\right) = \frac{\sec^2 \theta}{3a \cos^2 \theta \sin \theta} \] ### Step 5: Simplify the expression Since \(\sec^2 \theta = \frac{1}{\cos^2 \theta}\), we can rewrite: \[ \frac{d^2y}{dx^2} = \frac{1}{3a \cos^2 \theta \sin \theta \cos^2 \theta} = \frac{1}{3a \sin \theta \cos^4 \theta} \] ### Final Result Thus, the second derivative is: \[ \frac{d^2y}{dx^2} = \frac{1}{3a \sin \theta \cos^4 \theta} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|11 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((dy)/(dx))^(2)|at theta=(pi)/(2) is:

If x = a sec^(3) theta, y =a tan ^(3) theta , then find (dy)/( dx) at theta = (pi)/(4) .

If x = a cos^(3) theta, y = a sin ^(3) theta then sqrt(1+((dy)/(dx))^(2)) =?

If x=acos^3theta,y=a sin^3theta, then find the value of d2y/dx2 at θ=π/6

If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(dx^2) at theta=pi/6dot

If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(dx^2) at theta=pi/6dot

If x=a(1-cos^3theta),y=asin^3theta,"prove that"(d^2y)/(dx^2)=(32)/(27a) "at" theta=pi/6dot

If x=a(1-cos^3theta) , y=a\ sin^3theta , prove that (d^2y)/(dx^2)=(32)/(27\ a) at theta=pi/6 .

If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=