Home
Class 12
MATHS
The numbers of possible continuous f(x) ...

The numbers of possible continuous `f(x)` defined in `[0,1]` for which `I_1=int_0^1f(x)dx=1,I_2=int_0^1xf(x)dx-a ,I_3=int_0^1x^2f(x)dx=a^2 is//are` 1 (b) `oo` (c) 2 (d) 0

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The numbers of possible continuous f(x) defined in [0,1] for which I_1=int_0^1f(x)dx=1,I_2=int_0^1xf(x)dx-a ,I_3=int_0^1x^2f(x)dx=a^2i s//a r e 1 (b) oo (c) 2 (d) 0

int_0^2||x-1|-x|dx

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

1/4 int_(-1)^0 (x+2)dx-1/4 int_-1^0 x^2 dx

int_0^1f(x)dx=1,\ int_0^1xf(x)dx=a ,\ int_0^1x^2f(x)dx=a^2,\ t h e n\ int_0^1(a-x)^2f(x)dx equals a. 4a^2 b. 0 c. 2a^2 d. none of these

If I_1=int_0^1(e^x)/(1+x) dx aand I_2=int_0^1 x^2/(e^(x^3)(2-x^3)) dx then I_1/I_2 is

Q. if int_0^100(f(x) dx = a , then sum_(r=1)^100(int_0^1( f(r-1+x)dx)) =

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

Let: f:[0,3]vecR be a continuous function such that int_0^3f(x)dx=3. If I=int_0^3(xf(x)+int_0^xf(t)dt)dx , then value of I is equal to