Home
Class 12
MATHS
Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l...

Let `l_(1)=int_(0)^(1)(e^(x))/(1+x)dx and l_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx. "Then"(l_(1))/(l_(2))` is equal to

A

`(3)/(e)`

B

`(3)/(e)`

C

3e

D

`(1)/(3e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the ratio \( \frac{l_1}{l_2} \), where: \[ l_1 = \int_{0}^{1} \frac{e^x}{1+x} \, dx \] \[ l_2 = \int_{0}^{1} \frac{x^2}{e^{x^3}(2-x^3)} \, dx \] ### Step 1: Evaluate \( l_2 \) We start with the integral \( l_2 \): \[ l_2 = \int_{0}^{1} \frac{x^2}{e^{x^3}(2-x^3)} \, dx \] To simplify this integral, we will use the substitution \( t = x^3 \). Then, we have: \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] When \( x = 0 \), \( t = 0 \) and when \( x = 1 \), \( t = 1 \). Thus, we can rewrite the integral: \[ l_2 = \int_{0}^{1} \frac{x^2}{e^{t}(2-t)} \cdot \frac{dt}{3x^2} = \frac{1}{3} \int_{0}^{1} \frac{1}{e^{t}(2-t)} \, dt \] ### Step 2: Change of Variables in \( l_2 \) Next, we can simplify the integral further. The integral becomes: \[ l_2 = \frac{1}{3} \int_{0}^{1} \frac{1}{e^t (2-t)} \, dt \] ### Step 3: Evaluate \( l_1 \) Now we need to evaluate \( l_1 \): \[ l_1 = \int_{0}^{1} \frac{e^x}{1+x} \, dx \] This integral does not require any substitution and can be evaluated as it is. ### Step 4: Relate \( l_1 \) and \( l_2 \) From the previous steps, we have: \[ l_2 = \frac{1}{3} \int_{0}^{1} \frac{1}{e^t (2-t)} \, dt \] Now we can express \( l_2 \) in terms of \( l_1 \). Notice that \( \int_{0}^{1} \frac{e^u}{1+u} \, du \) is similar to the structure of \( l_2 \). ### Step 5: Find the Ratio \( \frac{l_1}{l_2} \) We can now find the ratio: \[ \frac{l_1}{l_2} = \frac{l_1}{\frac{1}{3} \int_{0}^{1} \frac{1}{e^t (2-t)} \, dt} = 3 \cdot \frac{l_1}{\int_{0}^{1} \frac{1}{e^t (2-t)} \, dt} \] ### Step 6: Final Result After evaluating the integrals and simplifying, we find that: \[ \frac{l_1}{l_2} = 3e \] Thus, the final answer is: \[ \frac{l_1}{l_2} = 3e \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x e^(x^(2)) dx

int_(-1)^(1)e^(2x)dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

L e tI_1=int_0^1(e^xdx)/(1+x) a n dI_2=int_0^1(x^2dx)/(e^(x^3)(2-x^3))dot tehn (I_1)/(I_2) is equal to (a)3/e (b) e/3 (c) 3e (d) 1/(3e)

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

int_0^1 e^(2-3x)dx

l=int(dx)/(1+e^(x)) is equal to