Home
Class 12
MATHS
Find the value of sin^(-1) ( cos. ( 33p...

Find the value of ` sin^(-1) ( cos. ( 33pi)/5)` .

A

`-pi/5`

B

`-pi/10`

C

`pi/5`

D

`pi/10`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^{-1} \left( \cos \left( \frac{33\pi}{5} \right) \right) \), we can follow these steps: ### Step 1: Simplify the angle First, we need to simplify the angle \( \frac{33\pi}{5} \). We can express it in terms of a standard angle by subtracting multiples of \( 2\pi \). \[ \frac{33\pi}{5} - 6\pi = \frac{33\pi}{5} - \frac{30\pi}{5} = \frac{3\pi}{5} \] Thus, we have: \[ \cos \left( \frac{33\pi}{5} \right) = \cos \left( \frac{3\pi}{5} \right) \] **Hint for Step 1:** Use the periodicity of cosine, which is \( 2\pi \), to simplify the angle. ### Step 2: Use the identity for cosine Next, we can use the identity for cosine, which states that: \[ \cos(2\pi + \theta) = \cos(\theta) \] Since \( \frac{3\pi}{5} \) is already in the range of \( [0, 2\pi] \), we can directly use it. ### Step 3: Find \( \sin^{-1} \) Now, we need to find \( \sin^{-1} \left( \cos \left( \frac{3\pi}{5} \right) \right) \). Using the co-function identity, we know that: \[ \cos \left( \frac{3\pi}{5} \right) = \sin \left( \frac{\pi}{2} - \frac{3\pi}{5} \right) = \sin \left( \frac{\pi}{2} - \frac{3\pi}{5} \right) = \sin \left( \frac{\pi}{10} \right) \] ### Step 4: Apply the inverse sine function Now we can apply the inverse sine function: \[ \sin^{-1} \left( \cos \left( \frac{3\pi}{5} \right) \right) = \sin^{-1} \left( \sin \left( \frac{\pi}{10} \right) \right) \] ### Step 5: Determine the final value Since \( \frac{\pi}{10} \) is within the range of \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \), we have: \[ \sin^{-1} \left( \sin \left( \frac{\pi}{10} \right) \right) = \frac{\pi}{10} \] Thus, the final answer is: \[ \sin^{-1} \left( \cos \left( \frac{33\pi}{5} \right) \right) = \frac{\pi}{10} \] **Final Answer:** \( \frac{\pi}{10} \)
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)(sin.(5pi)/3) .

Find the values of sin (cos−1 3/5)

Find the value of sin^(-1)(sin(3pi)/5) .

Write the value of sin^(-1)(cos(pi/9)) .

Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)

The value of sin^(-1)(sin((3pi)/(5)))

Find the value of : cos{sin("sin"^(-1)(pi)/6)}

Find the value of : sin{cos("cos"^(-1)(3pi)/4)}

The value of sin^(-1)(sin'(3pi)/(5)) is "….."

The value of sin^(-1)(sin'(3pi)/(5)) is "….."