Home
Class 12
MATHS
Evaluate the following tan^(-1) { cot ...

Evaluate the following
`tan^(-1) { cot (- 1/4)}`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \tan^{-1} \left( \cot \left( -\frac{1}{4} \right) \right) \), we can follow these steps: ### Step 1: Use the property of cotangent We know that: \[ \cot(-\theta) = -\cot(\theta) \] Thus, we can rewrite: \[ \cot\left(-\frac{1}{4}\right) = -\cot\left(\frac{1}{4}\right) \] ### Step 2: Substitute into the inverse tangent function Now we substitute this into our original expression: \[ \tan^{-1} \left( \cot\left(-\frac{1}{4}\right) \right) = \tan^{-1} \left( -\cot\left(\frac{1}{4}\right) \right) \] ### Step 3: Use the property of inverse tangent We know that: \[ \tan^{-1}(-x) = -\tan^{-1}(x) \] Applying this property, we get: \[ \tan^{-1} \left( -\cot\left(\frac{1}{4}\right) \right) = -\tan^{-1} \left( \cot\left(\frac{1}{4}\right) \right) \] ### Step 4: Relate cotangent to tangent Recall that: \[ \cot(\theta) = \tan\left(\frac{\pi}{2} - \theta\right) \] Thus, we can write: \[ \tan^{-1} \left( \cot\left(\frac{1}{4}\right) \right) = \tan^{-1} \left( \tan\left(\frac{\pi}{2} - \frac{1}{4}\right) \right) \] ### Step 5: Simplify using the inverse tangent property Since \( \tan^{-1}(\tan(x)) = x \) for \( x \) in the principal range of \( \tan^{-1} \): \[ \tan^{-1} \left( \tan\left(\frac{\pi}{2} - \frac{1}{4}\right) \right) = \frac{\pi}{2} - \frac{1}{4} \] ### Step 6: Substitute back into the expression Now substituting this back, we have: \[ -\tan^{-1} \left( \cot\left(\frac{1}{4}\right) \right) = -\left(\frac{\pi}{2} - \frac{1}{4}\right) \] This simplifies to: \[ -\frac{\pi}{2} + \frac{1}{4} \] ### Final Result Thus, the value of \( \tan^{-1} \left( \cot \left( -\frac{1}{4} \right) \right) \) is: \[ \frac{1}{4} - \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: (i) tan{2\ tan^(-1)(1/5)-pi/4} (ii) tan(1/2\ sin^(-1)(3/4)

Evaluate the following: "cos"(tan^(-1)3//4)

Evaluate the following: "cos"(tan^(-1)3//4)

Evaluate each of the following: cot^(-1)(cotpi/3) (ii) cot^(-1)(cot(4pi)/3) (iii) cot^(-1)(cot(9pi)/4)

Evaluate each of the following: tan^(-1)(tan4) (ii) tan^(-1)(tan12)

For the principal values, evaluate each of the following: (i) tan^(-1){2cos(2sin^(-1)(1/2))} , (ii) "cot"[sin^(-1){cos(tan^(-1)1)}]

For the principal values, evaluate each of the following: (i) tan^(-1){2cos(2sin^(-1)(1/2))} (ii) "cot"[sin^(-1){cos(tan^(-1)1)}]

For the principal values, evaluate each of the following: (i) tan^(-1){2cos(2sin^(-1)(1/2))} (ii) cot"[sin^(-1){cos(tan^(-1)1)}]

For the principal values, evaluate each of the following: tan^(-1){2cos(2s in^(-1)1/2)} "cot"[sin^(-1){cos(tan^(-1)1)}]

Evaluate each of the following: tan(tan^(-1)3/4) (ii) tan(sin^(-1)5/(13)) (iii) tan(cos^(-1)8/(17))