Home
Class 12
MATHS
Evaluate the following sec ( cos^(-1)...

Evaluate the following
` sec ( cos^(-1) ( 2/3))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sec(\cos^{-1}(2/3)) \), we can follow these steps: ### Step 1: Set up the equation Let \( x = \cos^{-1}(2/3) \). This means that \( \cos(x) = \frac{2}{3} \). ### Step 2: Use the relationship between secant and cosine We know that \( \sec(x) = \frac{1}{\cos(x)} \). Therefore, we can express \( \sec(x) \) in terms of \( \cos(x) \). ### Step 3: Substitute the value of cosine Substituting \( \cos(x) = \frac{2}{3} \) into the secant formula, we have: \[ \sec(x) = \frac{1}{\cos(x)} = \frac{1}{\frac{2}{3}}. \] ### Step 4: Simplify the expression Now, simplify \( \frac{1}{\frac{2}{3}} \): \[ \sec(x) = \frac{1 \cdot 3}{2} = \frac{3}{2}. \] ### Step 5: Conclusion Thus, the value of \( \sec(\cos^{-1}(2/3)) \) is: \[ \sec(\cos^{-1}(2/3)) = \frac{3}{2}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following cos [ cos^(-1) ( (-1)/3) - sin^(-1) ( 1/3)] .

Evaluate the following : sin ^(2) ( cos ^(-1) . 1/2) + cos^(2) ( sin^(-1) . 1/3) .

Evaluate the following: "cos"(tan^(-1)3//4)

Evaluate the following: "cos"(tan^(-1)3//4)

Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-sec^(-1)3]

Evaluate each of the following: sec^(-1)(secpi/3) (ii) sec^(-1)(sec(2pi)/3) (iii) sec^(-1)(sec(5pi)/4)

Evaluate each of the following: sin(sec^(-1)(17/8)) (ii) "c o s e c"(cos^(-1)(3/5)) (iii) sec(sin^(-1)(12/13))

Evaluate each of the following: (i) cot^(-1)(1/(sqrt(3)))-"cosec"^(-1)(-2)+sec^(-1)(2/(sqrt(3))) (ii) cot^(-1){2cos(sin^(-1)((sqrt(3))/2))}

Evaluate each of the following: sec^(-1)(sec(7pi)/3) (ii) sec^(-1)(sec(9pi)/5) (iii) sec^(-1){sec(-(7pi)/3)}

Evaluate each of the following: sin^(-1)(sinpi/3) (ii) cos^(-1)(cos(2pi)/3)